Weakly Supervised Deep Nuclei Segmentation With Sparsely Annotated Bounding Boxes for DNA Image Cytometry

分割 计算机科学 杠杆(统计) 人工智能 最小边界框 跳跃式监视 模式识别(心理学) 图像分割 像素 计算机视觉 图像(数学)
作者
Yixiong Liang,Zhihua Yin,Haotian Liu,Hailong Zeng,Jianxin Wang,Jianfeng Liu,Nanying Che
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:20 (1): 785-795 被引量:11
标识
DOI:10.1109/tcbb.2021.3138189
摘要

Nuclei segmentation is an essential step in DNA ploidy analysis by image-based cytometry (DNA-ICM) which is widely used in cytopathology and allows an objective measurement of DNA content (ploidy). The routine fully supervised learning-based method requires often tedious and expensive pixel-wise labels. In this paper, we propose a novel weakly supervised nuclei segmentation framework which exploits only sparsely annotated bounding boxes, without any segmentation labels. The key is to integrate the traditional image segmentation and self-training into fully supervised instance segmentation. We first leverage the traditional segmentation to generate coarse masks for each box-annotated nucleus to supervise the training of a teacher model, which is then responsible for both the refinement of these coarse masks and pseudo labels generation of unlabeled nuclei. These pseudo labels and refined masks along with the original manually annotated bounding boxes jointly supervise the training of student model. Both teacher and student share the same architecture and especially the student is initialized by the teacher. We have extensively evaluated our method with both our DNA-ICM dataset and public cytopathological dataset. Without bells and whistles, our method outperforms all existing weakly supervised entries on both datasets. Code and our DNA-ICM dataset are publicly available at https://github.com/CVIU-CSU/Weakly-Supervised-Nuclei-Segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lin应助大牛顿采纳,获得10
刚刚
刚刚
勤奋的熊猫完成签到 ,获得积分10
1秒前
精明的玉米完成签到,获得积分10
2秒前
科目三应助呆呆要努力采纳,获得10
3秒前
yyryyrr发布了新的文献求助10
3秒前
5秒前
yang发布了新的文献求助10
5秒前
5秒前
情怀应助suuri采纳,获得10
6秒前
Yang发布了新的文献求助30
6秒前
9秒前
深情安青应助WZQ采纳,获得10
9秒前
9秒前
10秒前
13秒前
科研通AI2S应助MQ采纳,获得10
15秒前
15秒前
CipherSage应助hyx采纳,获得10
15秒前
15秒前
郑qqqq发布了新的文献求助10
16秒前
16秒前
CipherSage应助精明的玉米采纳,获得10
17秒前
jj发布了新的文献求助10
17秒前
18秒前
大牛顿完成签到,获得积分10
18秒前
研友_nPKAEL发布了新的文献求助20
19秒前
zhouyong发布了新的文献求助10
24秒前
知来者发布了新的文献求助10
24秒前
尤他完成签到,获得积分10
24秒前
华仔应助郑qqqq采纳,获得10
26秒前
27秒前
yang发布了新的文献求助10
27秒前
bocky完成签到 ,获得积分10
28秒前
28秒前
31秒前
33秒前
34秒前
萤阳发布了新的文献求助10
34秒前
Jasper应助zeer0707采纳,获得30
35秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3542895
求助须知:如何正确求助?哪些是违规求助? 3120176
关于积分的说明 9341944
捐赠科研通 2818272
什么是DOI,文献DOI怎么找? 1549447
邀请新用户注册赠送积分活动 722160
科研通“疑难数据库(出版商)”最低求助积分说明 712978