Comparing the performance and coverage of selected in silico (liver) metabolism tools relative to reported studies in the literature to inform analogue selection in read-across: A case study

生物信息学 选择(遗传算法) 计算生物学 计算机科学 生物信息学 生物 人工智能 生物化学 基因
作者
Matthew W. Boyce,Brian N. Meyer,Christopher M. Grulke,Lucina E. Lizarraga,Grace Patlewicz
出处
期刊:Computational Toxicology [Elsevier BV]
卷期号:21: 100208-100208 被引量:8
标识
DOI:10.1016/j.comtox.2021.100208
摘要

Changes in the regulatory landscape of chemical safety assessment call for the use of New Approach Methodologies (NAMs) including read-across to fill data gaps. One critical aspect of analogue evaluation is the extent to which target and source analogues are metabolically similar. In this study, a set of 37 structurally diverse chemicals were compiled from the EPA ToxCast inventory to compare and contrast a selection of metabolism in silico tools, in terms of their coverage and performance relative to metabolism information reported in the literature. The aim was to build understanding of the scope and capabilities of these tools and how they could be utilised in a read-across assessment. The tools were Systematic Generation of Metabolites (SyGMa), Meteor Nexus, BioTransformer, Tissue Metabolism Simulator (TIMES), OECD Toolbox, and Chemical Transformation Simulator (CTS). Performance was characterised by sensitivity and precision determined by comparing predictions against literature reported metabolites (from 44 publications). A coverage score was derived to provide a relative quantitative comparison between the tools. Meteor, TIMES, Toolbox, and CTS predictions were run in batch mode, using default settings. SyGMa and BioTransformer were run with user-defined settings, (two passes of phase I and one pass of phase II). Hierarchical clustering revealed high similarity between TIMES and Toolbox. SyGMa had the highest coverage, matching an average of 38.63% of predictions generated by the other tools though was prone to significant overprediction. It generated 5125 metabolites, which represented 54.67% of all predictions. Precision and sensitivity values ranged from 1.1 to 29% and 14.7–28.3% respectively. The Toolbox had the highest performance overall. A case study was presented for 3,4-Toluenediamine (3,4-TDA), assessed for the derivation of screening-level Provisional Peer Reviewed Toxicity Values (PPRTVs), was used to demonstrate the practical role in silico metabolism information can play in analogue evaluation as part of a read-across approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我想喝可乐完成签到,获得积分10
刚刚
闪闪星星完成签到,获得积分10
刚刚
刚刚
无花果应助牙线棒棒哒采纳,获得10
刚刚
Oreki完成签到,获得积分10
刚刚
怕孤独的芷蕾完成签到 ,获得积分10
1秒前
1秒前
123发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
2秒前
小白白白完成签到 ,获得积分10
3秒前
指尖心事完成签到,获得积分10
3秒前
干净之槐完成签到,获得积分10
4秒前
感性的寄真完成签到 ,获得积分10
4秒前
galen完成签到,获得积分10
4秒前
4秒前
梅西完成签到 ,获得积分10
4秒前
4秒前
dora332211发布了新的文献求助10
5秒前
清脆南蕾完成签到,获得积分10
5秒前
丘比特应助maorongfu456采纳,获得10
6秒前
ZQZ完成签到,获得积分10
6秒前
开心的眼睛完成签到,获得积分10
7秒前
7秒前
7秒前
keyana25完成签到,获得积分10
7秒前
zhui发布了新的文献求助10
8秒前
9秒前
9秒前
呼呼哈哈完成签到,获得积分10
10秒前
兔BF完成签到,获得积分10
10秒前
10秒前
11秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
ppprotein完成签到,获得积分10
13秒前
张晓倩完成签到 ,获得积分10
13秒前
RLLLLLLL完成签到 ,获得积分10
14秒前
宝宝言兼完成签到,获得积分20
14秒前
JamesPei应助数学情缘采纳,获得10
14秒前
och3完成签到,获得积分10
14秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3661303
求助须知:如何正确求助?哪些是违规求助? 3222367
关于积分的说明 9745047
捐赠科研通 2931980
什么是DOI,文献DOI怎么找? 1605350
邀请新用户注册赠送积分活动 757854
科研通“疑难数据库(出版商)”最低求助积分说明 734569