Comparing the performance and coverage of selected in silico (liver) metabolism tools relative to reported studies in the literature to inform analogue selection in read-across: A case study

生物信息学 选择(遗传算法) 计算生物学 计算机科学 生物信息学 生物 人工智能 生物化学 基因
作者
Matthew W. Boyce,Brian N. Meyer,Christopher M. Grulke,Lucina E. Lizarraga,Grace Patlewicz
出处
期刊:Computational Toxicology [Elsevier BV]
卷期号:21: 100208-100208 被引量:8
标识
DOI:10.1016/j.comtox.2021.100208
摘要

Changes in the regulatory landscape of chemical safety assessment call for the use of New Approach Methodologies (NAMs) including read-across to fill data gaps. One critical aspect of analogue evaluation is the extent to which target and source analogues are metabolically similar. In this study, a set of 37 structurally diverse chemicals were compiled from the EPA ToxCast inventory to compare and contrast a selection of metabolism in silico tools, in terms of their coverage and performance relative to metabolism information reported in the literature. The aim was to build understanding of the scope and capabilities of these tools and how they could be utilised in a read-across assessment. The tools were Systematic Generation of Metabolites (SyGMa), Meteor Nexus, BioTransformer, Tissue Metabolism Simulator (TIMES), OECD Toolbox, and Chemical Transformation Simulator (CTS). Performance was characterised by sensitivity and precision determined by comparing predictions against literature reported metabolites (from 44 publications). A coverage score was derived to provide a relative quantitative comparison between the tools. Meteor, TIMES, Toolbox, and CTS predictions were run in batch mode, using default settings. SyGMa and BioTransformer were run with user-defined settings, (two passes of phase I and one pass of phase II). Hierarchical clustering revealed high similarity between TIMES and Toolbox. SyGMa had the highest coverage, matching an average of 38.63% of predictions generated by the other tools though was prone to significant overprediction. It generated 5125 metabolites, which represented 54.67% of all predictions. Precision and sensitivity values ranged from 1.1 to 29% and 14.7–28.3% respectively. The Toolbox had the highest performance overall. A case study was presented for 3,4-Toluenediamine (3,4-TDA), assessed for the derivation of screening-level Provisional Peer Reviewed Toxicity Values (PPRTVs), was used to demonstrate the practical role in silico metabolism information can play in analogue evaluation as part of a read-across approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
啦啦啦完成签到 ,获得积分10
1秒前
tangyangzju发布了新的文献求助10
5秒前
白小橘完成签到 ,获得积分10
12秒前
tangyangzju完成签到,获得积分10
12秒前
带志完成签到 ,获得积分10
12秒前
juan完成签到 ,获得积分10
13秒前
嘟嘟完成签到 ,获得积分10
16秒前
吱吱完成签到 ,获得积分10
16秒前
17秒前
呆萌的小海豚完成签到,获得积分10
19秒前
优雅莞完成签到,获得积分10
20秒前
Lamis完成签到 ,获得积分10
22秒前
直率的菠萝完成签到 ,获得积分10
25秒前
zshhay完成签到 ,获得积分10
27秒前
高是个科研狗完成签到 ,获得积分10
29秒前
aiyawy完成签到 ,获得积分10
30秒前
yshj完成签到 ,获得积分10
34秒前
able完成签到 ,获得积分10
35秒前
36秒前
Echo_1995发布了新的文献求助10
44秒前
随心所欲完成签到 ,获得积分10
45秒前
暮夕梧桐完成签到,获得积分10
46秒前
嘻嘻哈哈完成签到 ,获得积分10
50秒前
新洸完成签到 ,获得积分10
51秒前
卡卡西的猫完成签到 ,获得积分10
1分钟前
聂青枫完成签到,获得积分10
1分钟前
LOST完成签到 ,获得积分10
1分钟前
yinyin完成签到 ,获得积分10
1分钟前
沉静香氛完成签到 ,获得积分10
1分钟前
1分钟前
北笙完成签到 ,获得积分10
1分钟前
卢健辉发布了新的文献求助10
1分钟前
mark33442完成签到,获得积分10
1分钟前
明天过后完成签到,获得积分10
1分钟前
zhangxin完成签到,获得积分10
1分钟前
一行白鹭上青天完成签到 ,获得积分10
1分钟前
卢健辉完成签到,获得积分10
1分钟前
汉堡包应助迷路的煎蛋采纳,获得10
1分钟前
lightman完成签到,获得积分10
1分钟前
1分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968559
求助须知:如何正确求助?哪些是违规求助? 3513391
关于积分的说明 11167370
捐赠科研通 3248808
什么是DOI,文献DOI怎么找? 1794465
邀请新用户注册赠送积分活动 875116
科研通“疑难数据库(出版商)”最低求助积分说明 804664