Comparing the performance and coverage of selected in silico (liver) metabolism tools relative to reported studies in the literature to inform analogue selection in read-across: A case study

生物信息学 选择(遗传算法) 计算生物学 计算机科学 生物信息学 生物 人工智能 生物化学 基因
作者
Matthew W. Boyce,Brian N. Meyer,Christopher M. Grulke,Lucina E. Lizarraga,Grace Patlewicz
出处
期刊:Computational Toxicology [Elsevier BV]
卷期号:21: 100208-100208 被引量:8
标识
DOI:10.1016/j.comtox.2021.100208
摘要

Changes in the regulatory landscape of chemical safety assessment call for the use of New Approach Methodologies (NAMs) including read-across to fill data gaps. One critical aspect of analogue evaluation is the extent to which target and source analogues are metabolically similar. In this study, a set of 37 structurally diverse chemicals were compiled from the EPA ToxCast inventory to compare and contrast a selection of metabolism in silico tools, in terms of their coverage and performance relative to metabolism information reported in the literature. The aim was to build understanding of the scope and capabilities of these tools and how they could be utilised in a read-across assessment. The tools were Systematic Generation of Metabolites (SyGMa), Meteor Nexus, BioTransformer, Tissue Metabolism Simulator (TIMES), OECD Toolbox, and Chemical Transformation Simulator (CTS). Performance was characterised by sensitivity and precision determined by comparing predictions against literature reported metabolites (from 44 publications). A coverage score was derived to provide a relative quantitative comparison between the tools. Meteor, TIMES, Toolbox, and CTS predictions were run in batch mode, using default settings. SyGMa and BioTransformer were run with user-defined settings, (two passes of phase I and one pass of phase II). Hierarchical clustering revealed high similarity between TIMES and Toolbox. SyGMa had the highest coverage, matching an average of 38.63% of predictions generated by the other tools though was prone to significant overprediction. It generated 5125 metabolites, which represented 54.67% of all predictions. Precision and sensitivity values ranged from 1.1 to 29% and 14.7–28.3% respectively. The Toolbox had the highest performance overall. A case study was presented for 3,4-Toluenediamine (3,4-TDA), assessed for the derivation of screening-level Provisional Peer Reviewed Toxicity Values (PPRTVs), was used to demonstrate the practical role in silico metabolism information can play in analogue evaluation as part of a read-across approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助50
2秒前
znq051210发布了新的文献求助10
2秒前
4秒前
5秒前
大模型应助高贵宛海采纳,获得10
6秒前
大模型应助科研通管家采纳,获得10
7秒前
无极微光应助科研通管家采纳,获得20
7秒前
核桃应助科研通管家采纳,获得10
7秒前
彭于彦祖应助科研通管家采纳,获得200
7秒前
7秒前
天然应助科研通管家采纳,获得10
7秒前
无极微光应助科研通管家采纳,获得20
7秒前
今后应助科研通管家采纳,获得10
7秒前
Lucas应助科研通管家采纳,获得10
7秒前
浮游应助科研通管家采纳,获得10
7秒前
DijiaXu应助科研通管家采纳,获得10
7秒前
深情安青应助科研通管家采纳,获得10
7秒前
7秒前
8秒前
8秒前
8秒前
8秒前
leaolf应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
江南烟雨如笙完成签到 ,获得积分10
8秒前
林途发布了新的文献求助10
9秒前
Wink完成签到 ,获得积分10
9秒前
10秒前
kaede完成签到,获得积分10
11秒前
12秒前
13秒前
13秒前
科研通AI5应助deng采纳,获得10
14秒前
自由的小土豆完成签到,获得积分10
14秒前
西瓜发布了新的文献求助30
17秒前
Owen应助allenise采纳,获得10
17秒前
漱石枕流完成签到 ,获得积分10
18秒前
量子星尘发布了新的文献求助10
19秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5131087
求助须知:如何正确求助?哪些是违规求助? 4333112
关于积分的说明 13499238
捐赠科研通 4169825
什么是DOI,文献DOI怎么找? 2285943
邀请新用户注册赠送积分活动 1286868
关于科研通互助平台的介绍 1227780