统一的划分
有限元法
亥姆霍兹方程
数学
混合有限元法
偏微分方程
扩展有限元法
分拆(数论)
应用数学
先验与后验
趋同(经济学)
高压有限元法
亥姆霍兹自由能
数学分析
数学优化
有限元极限分析
边值问题
组合数学
哲学
物理
认识论
量子力学
经济
热力学
经济增长
作者
Ivo Babuška,Jens Markus Melenk
标识
DOI:10.1002/(sici)1097-0207(19970228)40:4<727::aid-nme86>3.0.co;2-n
摘要
A new finite element method is presented that features the ability to include in the finite element space knowledge about the partial differential equation being solved. This new method can therefore be more efficient than the usual finite element methods. An additional feature of the partition-of-unity method is that finite element spaces of any desired regularity can be constructed very easily. This paper includes a convergence proof of this method and illustrates its efficiency by an application to the Helmholtz equation for high wave numbers. The basic estimates for a posteriori error estimation for this new method are also proved. © 1997 by John Wiley & Sons, Ltd.
科研通智能强力驱动
Strongly Powered by AbleSci AI