期刊:Materials in engineering [Elsevier] 日期:2013-10-01卷期号:51: 676-682被引量:32
标识
DOI:10.1016/j.matdes.2013.04.050
摘要
AISI type 316 L(N) austenitic stainless steel is major construction material in the prototype fast breeder reactor (PFBR) because of its good high temperature strength, toughness, creep and low cycle fatigue properties and compatibility with liquid sodium. Sliding wear experiments were carried out at various temperatures up to 550 °C at constant load (20 N) and sliding speed (0.8 m/s) using a pin-on-disc test rig as per the ASTM standard G99-05. Analysis of the test results presented that, the wear increased considerably with the temperature. For the characterization of worn surface topography, comprehensive profilometry study was performed using Talysurf CLI 1000 surface profilometer and Ra (arithmetic mean deviation) and Sa (arithmetic mean deviation of surface) parameters values were evaluated. The roughness parameters were correlated with the amount wear data obtained from the experiments at various testing temperatures. As the temperature increases during the sliding wear, the material loss is presented with more undulations resulting in higher surface roughness values.