Texture Control for Improving Deep Drawability in Rolled and Annealed Aluminum Alloy Sheets

材料科学 再结晶(地质) 合金 退火(玻璃) 冶金 拉深 限制 纹理(宇宙学) 表层 复合材料 图层(电子) 人工智能 机械工程 古生物学 工程类 生物 计算机科学 图像(数学)
作者
Hirofumi Inoue,Takayuki Takasugi
出处
期刊:Materials transactions [The Japan Institute of Metals]
卷期号:48 (8): 2014-2022 被引量:88
标识
DOI:10.2320/matertrans.l-mra2007871
摘要

In order to find a possibility of texture control for improving deep drawability in rolled and annealed aluminum alloys, the relation among recrystallization texture, r-value and limiting drawing ratio was examined for sheet materials with various textures. By using specimens with {111} texture prepared artificially, limiting drawing ratio could be measured in a wide range of average r-value from 0.4 to 1.6. Experimental results demonstrated that there was a positive correlation between average r-value and limiting drawing ratio even in aluminum alloys. This means that an increase in average r-value leads to improvement of deep drawability. Warm rolling that forms shear texture including {111} components, therefore, was conducted to enhance average r-value for Al-Mg and Al-Mg-Si alloys. Recrystallization texture of an annealed Al-Mg alloy consisted of retained shear texture components in the surface layer and cube plus R orientations in the center layer. The average r-value was considerably improved compared with that of a cold rolled sheet. On the other hand, a T4-treated Al-Mg-Si alloy had a relatively weak cube texture on the whole, though the surface layer showed a different texture from the center. In this case, warm rolling was ineffective in improving average r-value, in spite of the existence of surface texture with higher r-value. However, the relation between recrystallization texture and experimental r-value was successfully explained for the Al-Mg-Si alloy as well as for the Al-Mg alloy, based on r-value calculations from overall texture through sheet thickness.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yh完成签到,获得积分10
刚刚
刚刚
dyd发布了新的文献求助10
1秒前
任性鞋垫发布了新的文献求助10
2秒前
科研通AI6应助干净绮山采纳,获得10
2秒前
3秒前
doudoumiao发布了新的文献求助20
3秒前
cc完成签到,获得积分20
3秒前
nihao发布了新的文献求助10
5秒前
qq完成签到 ,获得积分10
5秒前
gzt完成签到 ,获得积分10
5秒前
大个应助惜海采纳,获得10
6秒前
在水一方应助asdfg123采纳,获得10
6秒前
情怀应助Clare采纳,获得10
6秒前
王静静发布了新的文献求助10
7秒前
shuang发布了新的文献求助10
8秒前
小昼发布了新的文献求助10
9秒前
9秒前
猪猪hero发布了新的文献求助10
9秒前
10秒前
科研通AI2S应助xxxllllll采纳,获得10
11秒前
BowieHuang应助qxy采纳,获得20
11秒前
雾栖亓完成签到,获得积分10
12秒前
善学以致用应助Jasen采纳,获得10
12秒前
12秒前
13秒前
13秒前
14秒前
SciGPT应助芒果采纳,获得10
14秒前
聪明的鞅发布了新的文献求助10
14秒前
14秒前
15秒前
wanci应助Mr.g采纳,获得10
15秒前
英姑应助谨慎明雪采纳,获得20
16秒前
深情的火龙果完成签到,获得积分10
17秒前
zhuang完成签到 ,获得积分10
17秒前
18秒前
雾栖亓发布了新的文献求助10
18秒前
yejd完成签到,获得积分10
18秒前
19秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5615265
求助须知:如何正确求助?哪些是违规求助? 4700145
关于积分的说明 14906831
捐赠科研通 4741546
什么是DOI,文献DOI怎么找? 2548008
邀请新用户注册赠送积分活动 1511727
关于科研通互助平台的介绍 1473781