Texture Control for Improving Deep Drawability in Rolled and Annealed Aluminum Alloy Sheets

材料科学 再结晶(地质) 合金 退火(玻璃) 冶金 拉深 限制 纹理(宇宙学) 表层 复合材料 图层(电子) 人工智能 机械工程 古生物学 工程类 生物 计算机科学 图像(数学)
作者
Hirofumi Inoue,Takayuki Takasugi
出处
期刊:Materials transactions [The Japan Institute of Metals]
卷期号:48 (8): 2014-2022 被引量:88
标识
DOI:10.2320/matertrans.l-mra2007871
摘要

In order to find a possibility of texture control for improving deep drawability in rolled and annealed aluminum alloys, the relation among recrystallization texture, r-value and limiting drawing ratio was examined for sheet materials with various textures. By using specimens with {111} texture prepared artificially, limiting drawing ratio could be measured in a wide range of average r-value from 0.4 to 1.6. Experimental results demonstrated that there was a positive correlation between average r-value and limiting drawing ratio even in aluminum alloys. This means that an increase in average r-value leads to improvement of deep drawability. Warm rolling that forms shear texture including {111} components, therefore, was conducted to enhance average r-value for Al-Mg and Al-Mg-Si alloys. Recrystallization texture of an annealed Al-Mg alloy consisted of retained shear texture components in the surface layer and cube plus R orientations in the center layer. The average r-value was considerably improved compared with that of a cold rolled sheet. On the other hand, a T4-treated Al-Mg-Si alloy had a relatively weak cube texture on the whole, though the surface layer showed a different texture from the center. In this case, warm rolling was ineffective in improving average r-value, in spite of the existence of surface texture with higher r-value. However, the relation between recrystallization texture and experimental r-value was successfully explained for the Al-Mg-Si alloy as well as for the Al-Mg alloy, based on r-value calculations from overall texture through sheet thickness.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Twonej应助Bink采纳,获得200
刚刚
领导范儿应助铁光采纳,获得10
刚刚
刚刚
香蕉觅云应助lxy采纳,获得10
刚刚
1秒前
bkagyin应助欣喜踏歌采纳,获得10
1秒前
念安发布了新的文献求助10
2秒前
李爱国应助碧蓝笑槐采纳,获得10
2秒前
3秒前
3秒前
4秒前
元谷雪发布了新的文献求助10
6秒前
6秒前
7秒前
xx发布了新的文献求助10
7秒前
9秒前
小陶子完成签到,获得积分10
9秒前
膝膝相关完成签到,获得积分10
10秒前
独角兽发布了新的文献求助10
10秒前
Nowind发布了新的文献求助10
10秒前
10秒前
向晚生烟完成签到,获得积分10
10秒前
hmh发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
飞快的语蕊完成签到,获得积分10
14秒前
皮皮发布了新的文献求助10
14秒前
小火龙完成签到,获得积分10
14秒前
领导范儿应助无题采纳,获得10
14秒前
科研通AI6.1应助炙热灵槐采纳,获得10
14秒前
14秒前
蓝天发布了新的文献求助10
14秒前
lxy发布了新的文献求助10
16秒前
16秒前
CHONGMING发布了新的文献求助10
17秒前
优美松思发布了新的文献求助10
18秒前
姚老表发布了新的文献求助50
19秒前
可爱的函函应助Yifan采纳,获得10
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5760897
求助须知:如何正确求助?哪些是违规求助? 5526527
关于积分的说明 15398531
捐赠科研通 4897535
什么是DOI,文献DOI怎么找? 2634236
邀请新用户注册赠送积分活动 1582341
关于科研通互助平台的介绍 1537691