Texture Control for Improving Deep Drawability in Rolled and Annealed Aluminum Alloy Sheets

材料科学 再结晶(地质) 合金 退火(玻璃) 冶金 拉深 限制 纹理(宇宙学) 表层 复合材料 图层(电子) 人工智能 古生物学 工程类 图像(数学) 生物 机械工程 计算机科学
作者
Hirofumi Inoue,Takayuki Takasugi
出处
期刊:Materials transactions [The Japan Institute of Metals]
卷期号:48 (8): 2014-2022 被引量:88
标识
DOI:10.2320/matertrans.l-mra2007871
摘要

In order to find a possibility of texture control for improving deep drawability in rolled and annealed aluminum alloys, the relation among recrystallization texture, r-value and limiting drawing ratio was examined for sheet materials with various textures. By using specimens with {111} texture prepared artificially, limiting drawing ratio could be measured in a wide range of average r-value from 0.4 to 1.6. Experimental results demonstrated that there was a positive correlation between average r-value and limiting drawing ratio even in aluminum alloys. This means that an increase in average r-value leads to improvement of deep drawability. Warm rolling that forms shear texture including {111} components, therefore, was conducted to enhance average r-value for Al-Mg and Al-Mg-Si alloys. Recrystallization texture of an annealed Al-Mg alloy consisted of retained shear texture components in the surface layer and cube plus R orientations in the center layer. The average r-value was considerably improved compared with that of a cold rolled sheet. On the other hand, a T4-treated Al-Mg-Si alloy had a relatively weak cube texture on the whole, though the surface layer showed a different texture from the center. In this case, warm rolling was ineffective in improving average r-value, in spite of the existence of surface texture with higher r-value. However, the relation between recrystallization texture and experimental r-value was successfully explained for the Al-Mg-Si alloy as well as for the Al-Mg alloy, based on r-value calculations from overall texture through sheet thickness.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
丘比特应助Genius采纳,获得10
1秒前
ee发布了新的文献求助10
2秒前
Owen应助坦率的含海采纳,获得10
2秒前
大模型应助坦率的含海采纳,获得10
2秒前
Owen应助坦率的含海采纳,获得10
2秒前
所所应助坦率的含海采纳,获得10
2秒前
CipherSage应助坦率的含海采纳,获得10
2秒前
SciGPT应助坦率的含海采纳,获得10
2秒前
NexusExplorer应助MAKEYF采纳,获得10
2秒前
科研通AI6应助九月采纳,获得10
3秒前
所所应助周美言采纳,获得10
4秒前
5秒前
5秒前
dada发布了新的文献求助10
5秒前
科目三应助tjr采纳,获得10
5秒前
王佳俊完成签到,获得积分10
6秒前
冷静的若冰完成签到 ,获得积分10
6秒前
科研通AI6应助科研顺利采纳,获得10
6秒前
6秒前
大方的蓝完成签到 ,获得积分10
7秒前
7秒前
7秒前
wenxiangou完成签到,获得积分10
7秒前
77发布了新的文献求助10
7秒前
悦耳伊发布了新的文献求助10
7秒前
8秒前
8秒前
尔安完成签到,获得积分10
9秒前
9秒前
陈陈完成签到 ,获得积分10
9秒前
拾荒队长完成签到 ,获得积分10
9秒前
安安发布了新的文献求助10
9秒前
三年H完成签到,获得积分10
9秒前
10秒前
忧郁的鱿鱼完成签到,获得积分10
10秒前
哈哈哈哈发布了新的文献求助30
10秒前
kids发布了新的文献求助10
11秒前
wanci应助小杜采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5576966
求助须知:如何正确求助?哪些是违规求助? 4662231
关于积分的说明 14740378
捐赠科研通 4602878
什么是DOI,文献DOI怎么找? 2525991
邀请新用户注册赠送积分活动 1495885
关于科研通互助平台的介绍 1465470