亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Variability and climate change trend in vegetation phenology of recent decades in the Greater Khingan Mountain area, Northeastern China

物候学 归一化差异植被指数 生长季节 气候变化 环境科学 草原 植被(病理学) 自然地理学 降水 气候学 地理 生态学 气象学 医学 考古 病理 地质学 生物
作者
Huan Tang,Zhenwang Li,Zhiliang Zhu,Baorui Chen,Baohui Zhang,Xiaoping Xin
出处
期刊:Remote Sensing [MDPI AG]
卷期号:7 (9): 11914-11932 被引量:63
标识
DOI:10.3390/rs70911914
摘要

Vegetation phenology has been used in studies as an indicator of an ecosystem’s responses to climate change. Satellite remote sensing techniques can capture changes in vegetation greenness, which can be used to estimate vegetation phenology. In this study, a long-term vegetation phenology study of the Greater Khingan Mountain area in Northeastern China was performed by using the Global Inventory Modeling and Mapping Studies (GIMMS) normalized difference vegetation index version 3 (NDVI3g) dataset from the years 1982–2012. After reconstructing the NDVI time series, the start date of the growing season (SOS), the end date of the growing season (EOS) and the length of the growing season (LOS) were extracted using a dynamic threshold method. The response of the variation in phenology with climatic factors was also analyzed. The results showed that the phenology in the study area changed significantly in the three decades between 1982 and 2012, including a 12.1-day increase in the entire region’s average LOS, a 3.3-day advance in the SOS and an 8.8-day delay in the EOS. However, differences existed between the steppe, forest and agricultural regions, with the LOSs of the steppe region, forest region and agricultural region increasing by 4.40 days, 10.42 days and 1.71 days, respectively, and a later EOS seemed to more strongly affect the extension of the growing season. Additionally, temperature and precipitation were closely correlated with the phenology variations. This study provides a useful understanding of the recent change in phenology and its variability in this high-latitude study area, and this study also details the responses of several ecosystems to climate change.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
他也蓝完成签到,获得积分10
2秒前
青柠完成签到 ,获得积分10
6秒前
nina完成签到 ,获得积分10
7秒前
7秒前
Ming完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
13秒前
皮皮完成签到 ,获得积分10
18秒前
SimonShaw完成签到 ,获得积分10
19秒前
26秒前
kk_1315完成签到,获得积分0
31秒前
敬业乐群完成签到,获得积分10
33秒前
45秒前
学术小菜鸟完成签到 ,获得积分10
49秒前
Guts发布了新的文献求助10
49秒前
木有完成签到 ,获得积分10
59秒前
Bin_Liu完成签到,获得积分20
59秒前
59秒前
1分钟前
画星星发布了新的文献求助10
1分钟前
amengptsd完成签到,获得积分10
1分钟前
crx发布了新的文献求助10
1分钟前
1分钟前
大模型应助crx采纳,获得10
1分钟前
1分钟前
1分钟前
echo发布了新的文献求助10
1分钟前
1分钟前
123完成签到,获得积分10
1分钟前
1分钟前
小昭发布了新的文献求助10
1分钟前
1分钟前
打工人发布了新的文献求助10
1分钟前
顺利的边牧完成签到 ,获得积分10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
科研小白发布了新的文献求助10
1分钟前
1分钟前
abc应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5754768
求助须知:如何正确求助?哪些是违规求助? 5489338
关于积分的说明 15380586
捐赠科研通 4893238
什么是DOI,文献DOI怎么找? 2631830
邀请新用户注册赠送积分活动 1579747
关于科研通互助平台的介绍 1535552