摘要
Angewandte Chemie International EditionVolume 45, Issue 25 p. 4172-4175 Communication Pericyclic Cascade Reactions of (Bicyclo[1.1.0]butylmethyl)amines† Peter Wipf Prof., Peter Wipf Prof. [email protected] Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA, Fax: (+1) 412-624-0787Search for more papers by this authorMaciej A. A. Walczak, Maciej A. A. Walczak Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA, Fax: (+1) 412-624-0787Search for more papers by this author Peter Wipf Prof., Peter Wipf Prof. [email protected] Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA, Fax: (+1) 412-624-0787Search for more papers by this authorMaciej A. A. Walczak, Maciej A. A. Walczak Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA, Fax: (+1) 412-624-0787Search for more papers by this author First published: 08 June 2006 https://doi.org/10.1002/anie.200600723Citations: 37 † This work was supported by the National Science Foundation (CHE-0315205). We thank Dr. Steve Geib for the X-ray crystallographic analysis and Juan Arredondo for help with the acquisition of the NMR spectra. Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Graphical Abstract Direct access: Phase-transfer N-allylation and N-propargylation of (bicyclo[1.1.0]butylmethyl)amines initiate diastereoselective pericyclic cascade reactions that culminate in novel spirocyclic and tricyclic pyrrolidine heterocycles through formal ene or [2+2] pathways. Supporting Information Supporting information for this article is available on the WWW under http://www.wiley-vch.de/contents/jc_2002/2006/z600723_s.pdf or from the author. Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article. References 1 1aH. Lebel, J.-F. Marcoux, C. Molinaro, A. B. Charette, Chem. Rev. 2003, 103, 977–1050; 1bW. A. Donaldson, Tetrahedron 2001, 57, 8589–8627. 2 2aN.-Y. Fu, S.-H. Chan, H. N. C. Wong in The Chemistry of Cyclobutanes (Eds.: ), Wiley, New York, 2005, pp. 357–440; 2bJ. C. Namyslo, D. E. Kaufmann, Chem. Rev. 2003, 103, 1485–1538; 2cE. Lee-Ruff, G. Mladenova, Chem. Rev. 2003, 103, 1449–1484. 3S. Hoz in The Chemistry of Cyclopropyl Group (Ed.: ), Wiley, New York, 1987, pp. 1121–1192. 4 4aY. Gaoni, Tetrahedron 1989, 45, 2819–2840; 4bH. Takaya, T. Suzuki, Y. Kumagai, M. Hosoya, H. Kawauchi, R. Noyori, J. Org. Chem. 1981, 46, 2854–2861; 4cP. G. Gassman, M. J. Mullins, Tetrahedron Lett. 1980, 21, 2219–2222. 5K. B. Wiberg, G. M. Lampman, R. P. Ciula, D. S. Connor, P. Schertler, J. Lavanish, Tetrahedron 1965, 21, 2749–2769. 6 6aJ. M. Schulman, G. J. Fisanick, J. Am. Chem. Soc. 1970, 92, 6653–6654; 6bW. R. Moore, C. R. Costin, J. Am. Chem. Soc. 1971, 93, 4910–4912. 7 7aP. Wipf, C. R. J. Stephenson, K. Okumura, J. Am. Chem. Soc. 2003, 125, 14694–14695; 7bP. Wipf, C. Kendall, C. R. J. Stephenson, J. Am. Chem. Soc. 2003, 125, 761–768. 8 8aJ. Furukawa, N. Kawabata, J. Nishimura, Tetrahedron 1968, 24, 53–58; 8bA. B. Charette, N. Wilb, Synlett 2002, 176–178. 9P. Wipf, C. R. J. Stephenson, M. A. A. Walczak, Org. Lett. 2004, 6, 3009–3012. 10The remainder of the material was starting material 1 or rearranged allylcyclopropylbenzylamine. 11 11aA. Duker, G. Szeimies, Tetrahedron Lett. 1985, 26, 3555–3558; 11bJ. Weber, U. Haslinger, U. H. Brinker, J. Org. Chem. 1999, 64, 6084–6086. 12 12aE. P. Blanchard, Jr.,A. Cairncross, J. Am. Chem. Soc. 1966, 88, 487–495; 12bA. Cairncross, E. P. Blanchard, Jr., J. Am. Chem. Soc. 1966, 88, 496–504; 12cM. Pomerantz, G. W. Gruber, R. N. Wilke, J. Am. Chem. Soc. 1968, 90, 5040–5041; 12dP. G. Gassman, G. D. Richmond, J. Am. Chem. Soc. 1970, 92, 2090–2096; 12eM. Pomerantz, R. N. Wilke, G. W. Gruber, U. Roy, J. Am. Chem. Soc. 1972, 94, 2752–2758. 13E. Slusarska, A. Zwierzak, Synthesis 1980, 717–719. 14 14aW. Oppolzer, Pure Appl. Chem. 1981, 53, 1181–1201; 14bK. Mikami, M. Shimizu, Chem. Rev. 1992, 92, 1021–1050. 15The structure of 5 was assigned based on the X-ray analysis of the ketoaldehyde derived from cleavage of the cyclobutene ring. 16The relative stereochemistry of 12 was assigned based on NOESY analysis. 17A steric argument was used to rationalize the selectivity of the ene versus [2+2] pathway for simple bicyclo[1.1.0]butanes (see reference [12]); prior pericyclic reactions of bicyclo[1.1.0]butanes were limited to structurally simple substrates, and no further synthetic applications were reported. 18Reaction of 3-phenylbicyclo[1.1.0]butyllithium with acetaldehyde or benzaldehyde followed by phase-transfer alkylation resulted in a low yield of the alkylated product. 19For a demonstration of the radical nature of reactions of bicyclo[2.1.0]pentane with alkenes, see: 19aP. G. Gassman, K. T. Mansfield, T. J. Murphy, J. Am. Chem. Soc. 1969, 91, 1684–1689; 19bP. G. Gassman, K. T. Mansfield, J. Am. Chem. Soc. 1968, 90, 1524–1526. 20J. P. Stevenson, W. F. Jackson, J. M. Tanko, J. Am. Chem. Soc. 2002, 124, 4271–4281. 21aT. Linker, Angew. Chem. 1997, 109, 2150–2152; Angew. Chem. Int. Ed. Engl. 1997, 36, 2060–2062; 21balkene Z/E isomerization during N-alkylation was not responsible for the lack of stereospecificity; (Z)-cinnamyl bromide when treated with N-(3-phenylprop-2-ynyl)diphenylphosphinylamide gives an alkylated product with an intact Z double-bond configuration in 67 % yield. Citing Literature Volume45, Issue25June 19, 2006Pages 4172-4175 ReferencesRelatedInformation