Computerized Tongue Diagnosis Based on Bayesian Networks

舌头 贝叶斯网络 人工智能 计算机科学 贝叶斯概率 模式识别(心理学) 鉴定(生物学) 特征提取 机器学习 计算机视觉 医学 病理 植物 生物
作者
Bo Pang,David Zhang,Nengxin Li,Ke Wang
出处
期刊:IEEE Transactions on Biomedical Engineering [Institute of Electrical and Electronics Engineers]
卷期号:51 (10): 1803-1810 被引量:166
标识
DOI:10.1109/tbme.2004.831534
摘要

Tongue diagnosis is an important diagnostic method in traditional Chinese medicine (TCM). However, due to its qualitative, subjective and experience-based nature, traditional tongue diagnosis has a very limited-application in clinical medicine. Moreover, traditional tongue diagnosis is always concerned with the identification of syndromes rather than with the connection between tongue abnormal appearances and diseases. This is not well understood in Western medicine, thus greatly obstruct its wider use in the world. In this paper, we present a novel computerized tongue inspection method aiming to address these problems. First, two kinds of quantitative features, chromatic and textural measures, are extracted from tongue images by using popular digital image processing techniques. Then, Bayesian networks are employed to model the relationship between these quantitative features and diseases. The effectiveness of the method is tested on a group of 455 patients affected by 13 common diseases as well as other 70 healthy volunteers, and the diagnostic results predicted by the previously trained Bayesian network classifiers are reported.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hl完成签到,获得积分10
刚刚
刚刚
刚刚
科研通AI5应助dingdong采纳,获得10
1秒前
Jasper应助幸福胡萝卜采纳,获得10
1秒前
爱看文献的小羽毛完成签到,获得积分10
1秒前
2秒前
song99发布了新的文献求助10
2秒前
2秒前
juan完成签到 ,获得积分10
2秒前
徐安琪完成签到,获得积分10
3秒前
小蘑菇应助深爱不疑采纳,获得200
3秒前
头发乱了完成签到,获得积分10
3秒前
3秒前
格兰兔米兔完成签到,获得积分10
3秒前
3秒前
3秒前
Luna完成签到 ,获得积分10
4秒前
汪鸡毛发布了新的文献求助10
4秒前
积极寻梅发布了新的文献求助10
5秒前
5秒前
tu发布了新的文献求助30
6秒前
在水一方应助云_123采纳,获得10
6秒前
科研小民工应助晚安采纳,获得50
6秒前
木木完成签到,获得积分10
6秒前
7秒前
7秒前
晨安完成签到,获得积分10
8秒前
8秒前
9秒前
9秒前
爆米花应助特兰克斯采纳,获得10
9秒前
10秒前
11秒前
11秒前
12秒前
葛辉辉发布了新的文献求助10
12秒前
12秒前
共享精神应助baobaonaixi采纳,获得10
12秒前
半颗橙子发布了新的文献求助10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762