Markov Decision Processes: Discrete Stochastic Dynamic Programming.

动态规划 马尔可夫决策过程 计算机科学 马尔可夫链 数学优化 数学 马尔可夫过程 机器学习 统计
作者
Kasra Hazeghi,Martin L. Puterman
标识
DOI:10.2307/2291177
摘要

From the Publisher: The past decade has seen considerable theoretical and applied research on Markov decision processes, as well as the growing use of these models in ecology, economics, communications engineering, and other fields where outcomes are uncertain and sequential decision-making processes are needed. A timely response to this increased activity, Martin L. Puterman's new work provides a uniquely up-to-date, unified, and rigorous treatment of the theoretical, computational, and applied research on Markov decision process models. It discusses all major research directions in the field, highlights many significant applications of Markov decision processes models, and explores numerous important topics that have previously been neglected or given cursory coverage in the literature. Markov Decision Processes focuses primarily on infinite horizon discrete time models and models with discrete time spaces while also examining models with arbitrary state spaces, finite horizon models, and continuous-time discrete state models. The book is organized around optimality criteria, using a common framework centered on the optimality (Bellman) equation for presenting results. The results are presented in a theorem-proof format and elaborated on through both discussion and examples, including results that are not available in any other book. A two-state Markov decision process model, presented in Chapter 3, is analyzed repeatedly throughout the book and demonstrates many results and algorithms. Markov Decision Processes covers recent research advances in such areas as countable state space models with average reward criterion, constrained models, and models with risk sensitive optimality criteria. It also explores several topics that have received little or no attention in other books, including modified policy iteration, multichain models with average reward criterion, and sensitive optimality. In addition, a Bibliographic Remarks section in each chapter comments on relevant historic

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yeye完成签到 ,获得积分10
1秒前
冷傲的荧荧完成签到,获得积分10
1秒前
1秒前
打打应助刀剑采纳,获得10
1秒前
默存应助宋宋采纳,获得10
2秒前
2秒前
清新的音响完成签到 ,获得积分10
2秒前
4秒前
4秒前
珊珊完成签到 ,获得积分10
4秒前
科研通AI2S应助nee采纳,获得10
5秒前
万能图书馆应助楚风吟采纳,获得10
5秒前
fly完成签到,获得积分10
5秒前
5秒前
波波发布了新的文献求助10
6秒前
无奈晓瑶完成签到,获得积分10
6秒前
zpctx发布了新的文献求助10
7秒前
zoey发布了新的文献求助10
7秒前
8秒前
WWW完成签到,获得积分10
8秒前
8秒前
ycool完成签到,获得积分10
8秒前
蓝调芋泥发布了新的文献求助10
9秒前
小梦完成签到,获得积分10
9秒前
ambrose37完成签到 ,获得积分10
9秒前
阿航完成签到,获得积分10
9秒前
9秒前
10秒前
10秒前
打打应助桐笑采纳,获得10
11秒前
泥娃娃发布了新的文献求助30
11秒前
11秒前
天冷了hhhdh完成签到,获得积分10
12秒前
12秒前
melenda发布了新的文献求助10
12秒前
14秒前
nhscyhy发布了新的文献求助10
14秒前
15秒前
973完成签到,获得积分10
15秒前
刀剑发布了新的文献求助10
16秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
山海经图录 李云中版 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3327389
求助须知:如何正确求助?哪些是违规求助? 2957705
关于积分的说明 8586874
捐赠科研通 2635801
什么是DOI,文献DOI怎么找? 1442588
科研通“疑难数据库(出版商)”最低求助积分说明 668315
邀请新用户注册赠送积分活动 655382