Markov Decision Processes: Discrete Stochastic Dynamic Programming.

动态规划 马尔可夫决策过程 计算机科学 马尔可夫链 数学优化 数学 马尔可夫过程 机器学习 统计
作者
Kasra Hazeghi,Martin L. Puterman
标识
DOI:10.2307/2291177
摘要

From the Publisher: The past decade has seen considerable theoretical and applied research on Markov decision processes, as well as the growing use of these models in ecology, economics, communications engineering, and other fields where outcomes are uncertain and sequential decision-making processes are needed. A timely response to this increased activity, Martin L. Puterman's new work provides a uniquely up-to-date, unified, and rigorous treatment of the theoretical, computational, and applied research on Markov decision process models. It discusses all major research directions in the field, highlights many significant applications of Markov decision processes models, and explores numerous important topics that have previously been neglected or given cursory coverage in the literature. Markov Decision Processes focuses primarily on infinite horizon discrete time models and models with discrete time spaces while also examining models with arbitrary state spaces, finite horizon models, and continuous-time discrete state models. The book is organized around optimality criteria, using a common framework centered on the optimality (Bellman) equation for presenting results. The results are presented in a theorem-proof format and elaborated on through both discussion and examples, including results that are not available in any other book. A two-state Markov decision process model, presented in Chapter 3, is analyzed repeatedly throughout the book and demonstrates many results and algorithms. Markov Decision Processes covers recent research advances in such areas as countable state space models with average reward criterion, constrained models, and models with risk sensitive optimality criteria. It also explores several topics that have received little or no attention in other books, including modified policy iteration, multichain models with average reward criterion, and sensitive optimality. In addition, a Bibliographic Remarks section in each chapter comments on relevant historic

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
受伤的平安完成签到,获得积分10
刚刚
ZeKaWa应助linlin采纳,获得10
2秒前
10秒前
14秒前
tianya完成签到,获得积分10
15秒前
16秒前
烟花应助标致的妙晴采纳,获得10
17秒前
浮游应助朴素的松采纳,获得10
19秒前
19秒前
20秒前
加百莉发布了新的文献求助10
21秒前
cancan发布了新的文献求助10
22秒前
伯言发布了新的文献求助10
27秒前
元谷雪应助陈帅采纳,获得10
28秒前
初雪完成签到,获得积分10
29秒前
花花花花完成签到 ,获得积分10
34秒前
36秒前
37秒前
肉肉完成签到 ,获得积分10
37秒前
cancan完成签到,获得积分10
38秒前
zhuangbaobao发布了新的文献求助10
41秒前
郭6666发布了新的文献求助10
42秒前
完美世界应助留胡子的火采纳,获得10
47秒前
脑洞疼应助郭6666采纳,获得10
47秒前
公冶愚志完成签到,获得积分10
50秒前
威武的皮卡丘完成签到,获得积分10
56秒前
56秒前
56秒前
大龙哥886应助ri_290采纳,获得10
57秒前
sevenhill应助Devastating采纳,获得10
59秒前
59秒前
今后应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
酷波er应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
Orange应助科研通管家采纳,获得10
1分钟前
李健应助科研通管家采纳,获得30
1分钟前
拼搏应助科研通管家采纳,获得10
1分钟前
无花果应助科研通管家采纳,获得20
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557746
求助须知:如何正确求助?哪些是违规求助? 4642805
关于积分的说明 14669158
捐赠科研通 4584228
什么是DOI,文献DOI怎么找? 2514701
邀请新用户注册赠送积分活动 1488877
关于科研通互助平台的介绍 1459555