Markov Decision Processes: Discrete Stochastic Dynamic Programming.

动态规划 马尔可夫决策过程 计算机科学 马尔可夫链 数学优化 数学 马尔可夫过程 机器学习 统计
作者
Kasra Hazeghi,Martin L. Puterman
标识
DOI:10.2307/2291177
摘要

From the Publisher: The past decade has seen considerable theoretical and applied research on Markov decision processes, as well as the growing use of these models in ecology, economics, communications engineering, and other fields where outcomes are uncertain and sequential decision-making processes are needed. A timely response to this increased activity, Martin L. Puterman's new work provides a uniquely up-to-date, unified, and rigorous treatment of the theoretical, computational, and applied research on Markov decision process models. It discusses all major research directions in the field, highlights many significant applications of Markov decision processes models, and explores numerous important topics that have previously been neglected or given cursory coverage in the literature. Markov Decision Processes focuses primarily on infinite horizon discrete time models and models with discrete time spaces while also examining models with arbitrary state spaces, finite horizon models, and continuous-time discrete state models. The book is organized around optimality criteria, using a common framework centered on the optimality (Bellman) equation for presenting results. The results are presented in a theorem-proof format and elaborated on through both discussion and examples, including results that are not available in any other book. A two-state Markov decision process model, presented in Chapter 3, is analyzed repeatedly throughout the book and demonstrates many results and algorithms. Markov Decision Processes covers recent research advances in such areas as countable state space models with average reward criterion, constrained models, and models with risk sensitive optimality criteria. It also explores several topics that have received little or no attention in other books, including modified policy iteration, multichain models with average reward criterion, and sensitive optimality. In addition, a Bibliographic Remarks section in each chapter comments on relevant historic
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nature应助文件撤销了驳回
刚刚
1秒前
学术噗噗完成签到,获得积分10
2秒前
无花果应助hope采纳,获得10
2秒前
完美世界应助微微采纳,获得10
3秒前
顺心绝山发布了新的文献求助200
3秒前
顾矜应助瞬华采纳,获得10
3秒前
舒心雨完成签到,获得积分10
4秒前
xin_you完成签到,获得积分10
4秒前
water应助懒羊羊采纳,获得10
5秒前
wuliumu完成签到,获得积分10
6秒前
7秒前
8秒前
小鱼儿发布了新的文献求助10
9秒前
12秒前
14秒前
hope完成签到,获得积分10
14秒前
15秒前
顺利紫山发布了新的文献求助10
15秒前
风雨中飘摇应助昏睡的蟠桃采纳,获得100
16秒前
16秒前
DODO完成签到,获得积分10
17秒前
17秒前
lee发布了新的文献求助10
19秒前
沉默傲芙发布了新的文献求助10
19秒前
19秒前
20秒前
June完成签到 ,获得积分10
21秒前
sunshinegirl发布了新的文献求助30
21秒前
Theprisoners举报snwnqi_gmail求助涉嫌违规
23秒前
老实向雁应助美满水蜜桃采纳,获得30
25秒前
彭于晏应助小白白采纳,获得30
25秒前
Lucas应助高雅晴采纳,获得10
27秒前
豆子发布了新的文献求助20
27秒前
星辰大海应助三新荞采纳,获得10
27秒前
27秒前
淡酒完成签到,获得积分10
28秒前
orixero应助科研通管家采纳,获得10
30秒前
Lucas应助科研通管家采纳,获得10
30秒前
30秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993587
求助须知:如何正确求助?哪些是违规求助? 3534299
关于积分的说明 11265206
捐赠科研通 3274074
什么是DOI,文献DOI怎么找? 1806303
邀请新用户注册赠送积分活动 883118
科研通“疑难数据库(出版商)”最低求助积分说明 809712