Methods of Covariate Selection: Directed Acyclic Graphs and the Change-in-Estimate Procedure

协变量 有向无环图 统计 混淆 置信区间 标准误差 逻辑回归 回归 选择(遗传算法) 均方误差 回归分析 选型 计量经济学 数学 计算机科学
作者
Hsin-Yi Weng,Ya Hui Hsueh,Locksley L. McV. Messam,Irva Hertz-Picciotto
出处
期刊:American Journal of Epidemiology [Oxford University Press]
卷期号:169 (10): 1182-1190 被引量:161
标识
DOI:10.1093/aje/kwp035
摘要

Four covariate selection approaches were compared: a directed acyclic graph (DAG) full model and 3 DAG and change-in-estimate combined procedures. Twenty-five scenarios with case-control samples were generated from 10 simulated populations in order to address the performance of these covariate selection procedures in the presence of confounders of various strengths and under DAG misspecification with omission of confounders or inclusion of nonconfounders. Performance was evaluated by standard error, bias, square root of the mean-squared error, and 95% confidence interval coverage. In most scenarios, the DAG full model without further covariate selection performed as well as or better than the other procedures when the DAGs were correctly specified, as well as when confounders were omitted. Model reduction by using change-in-estimate procedures showed potential gains in precision when the DAGs included nonconfounders, but underestimation of regression-based standard error might cause reduction in 95% confidence interval coverage. For modeling binary outcomes in a case-control study, the authors recommend construction of a "conservative" DAG, determination of all potential confounders, and then change-in-estimate procedures to simplify this full model. The authors advocate that, under the conditions investigated, the selection of final model should be based on changes in precision: Adopt the reduced model if its standard error (derived from logistic regression) is substantially smaller; otherwise, the full DAG-based model is appropriate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助清河响啊啊采纳,获得10
刚刚
1秒前
乐乐应助逗小豆采纳,获得10
1秒前
1秒前
1秒前
英俊延恶完成签到,获得积分10
1秒前
庆123发布了新的文献求助10
2秒前
2秒前
xiaoxiao完成签到,获得积分10
2秒前
2秒前
佳里完成签到,获得积分10
3秒前
星光发布了新的文献求助10
3秒前
认真的飞扬完成签到,获得积分10
3秒前
菜菜发布了新的文献求助20
4秒前
田様应助结实如音采纳,获得10
4秒前
4秒前
可乐完成签到,获得积分10
4秒前
4秒前
5秒前
阿橘完成签到,获得积分10
5秒前
额E发布了新的文献求助10
6秒前
好想吃火锅完成签到 ,获得积分10
6秒前
TuT88完成签到,获得积分10
7秒前
慕青应助Strike采纳,获得10
7秒前
LZY发布了新的文献求助50
7秒前
yiyi完成签到,获得积分10
7秒前
聪明发布了新的文献求助10
7秒前
8秒前
zbc_发布了新的文献求助10
9秒前
zx598376321完成签到,获得积分10
9秒前
小会完成签到,获得积分10
9秒前
9秒前
可乐发布了新的文献求助10
9秒前
酷酷妙梦完成签到,获得积分10
10秒前
黑暗与黎明完成签到 ,获得积分10
11秒前
shan发布了新的文献求助10
11秒前
ZQF发布了新的文献求助10
11秒前
obaica完成签到,获得积分10
11秒前
科研新秀z完成签到 ,获得积分10
12秒前
朴素易梦完成签到 ,获得积分10
12秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143003
求助须知:如何正确求助?哪些是违规求助? 2794045
关于积分的说明 7809520
捐赠科研通 2450348
什么是DOI,文献DOI怎么找? 1303779
科研通“疑难数据库(出版商)”最低求助积分说明 627056
版权声明 601384