Methods of Covariate Selection: Directed Acyclic Graphs and the Change-in-Estimate Procedure

协变量 有向无环图 统计 混淆 置信区间 标准误差 逻辑回归 回归 选择(遗传算法) 均方误差 回归分析 选型 计量经济学 数学 计算机科学 算法 机器学习
作者
Hsin‐Yi Weng,Yu‐Mei Hsueh,Locksley L. McV. Messam,Irva Hertz‐Picciotto
出处
期刊:American Journal of Epidemiology [Oxford University Press]
卷期号:169 (10): 1182-1190 被引量:205
标识
DOI:10.1093/aje/kwp035
摘要

Four covariate selection approaches were compared: a directed acyclic graph (DAG) full model and 3 DAG and change-in-estimate combined procedures. Twenty-five scenarios with case-control samples were generated from 10 simulated populations in order to address the performance of these covariate selection procedures in the presence of confounders of various strengths and under DAG misspecification with omission of confounders or inclusion of nonconfounders. Performance was evaluated by standard error, bias, square root of the mean-squared error, and 95% confidence interval coverage. In most scenarios, the DAG full model without further covariate selection performed as well as or better than the other procedures when the DAGs were correctly specified, as well as when confounders were omitted. Model reduction by using change-in-estimate procedures showed potential gains in precision when the DAGs included nonconfounders, but underestimation of regression-based standard error might cause reduction in 95% confidence interval coverage. For modeling binary outcomes in a case-control study, the authors recommend construction of a "conservative" DAG, determination of all potential confounders, and then change-in-estimate procedures to simplify this full model. The authors advocate that, under the conditions investigated, the selection of final model should be based on changes in precision: Adopt the reduced model if its standard error (derived from logistic regression) is substantially smaller; otherwise, the full DAG-based model is appropriate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
淡定海亦发布了新的文献求助10
刚刚
刚刚
1秒前
余姓懒发布了新的文献求助10
2秒前
3秒前
青黛发布了新的文献求助10
7秒前
佟彦成发布了新的文献求助10
8秒前
8秒前
今后应助王宇杰采纳,获得10
11秒前
Bighen完成签到 ,获得积分0
17秒前
任性的白玉完成签到 ,获得积分10
21秒前
zz完成签到 ,获得积分10
21秒前
xbchen完成签到,获得积分10
22秒前
温柔以蓝完成签到,获得积分10
25秒前
xbchen发布了新的文献求助10
25秒前
晚风完成签到,获得积分10
26秒前
王宏宇发布了新的文献求助10
27秒前
英俊的铭应助科研通管家采纳,获得10
28秒前
地表飞猪应助科研通管家采纳,获得10
28秒前
luyue9406应助科研通管家采纳,获得10
28秒前
汉堡包应助科研通管家采纳,获得10
28秒前
我是老大应助科研通管家采纳,获得10
28秒前
英姑应助科研通管家采纳,获得10
28秒前
科研通AI5应助科研通管家采纳,获得10
29秒前
29秒前
29秒前
luyue9406应助科研通管家采纳,获得10
29秒前
地表飞猪应助科研通管家采纳,获得10
29秒前
科研通AI2S应助科研通管家采纳,获得10
29秒前
小蘑菇应助科研通管家采纳,获得10
29秒前
顾矜应助科研通管家采纳,获得10
29秒前
绝情继父应助科研通管家采纳,获得10
29秒前
乐乐应助科研通管家采纳,获得10
29秒前
ED应助科研通管家采纳,获得10
29秒前
地表飞猪应助科研通管家采纳,获得10
29秒前
29秒前
29秒前
温柔以蓝发布了新的文献求助10
33秒前
33秒前
小代发布了新的文献求助10
34秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993104
求助须知:如何正确求助?哪些是违规求助? 3534001
关于积分的说明 11264385
捐赠科研通 3273705
什么是DOI,文献DOI怎么找? 1806142
邀请新用户注册赠送积分活动 883016
科研通“疑难数据库(出版商)”最低求助积分说明 809652