Spotting Fake Reviews via Collective Positive-Unlabeled Learning

计算机科学 垃圾邮件 人工智能 机器学习 集合(抽象数据类型) 监督学习 剽窃检测 资源(消歧) 情报检索 万维网 互联网 人工神经网络 计算机网络 程序设计语言
作者
Huayi Li,Zhiyuan Chen,Bing Liu,Xiaokai Wei,Jidong Shao
标识
DOI:10.1109/icdm.2014.47
摘要

Online reviews have become an increasingly important resource for decision making and product designing. But reviews systems are often targeted by opinion spamming. Although fake review detection has been studied by researchers for years using supervised learning, ground truth of large scale datasets is still unavailable and most of existing approaches of supervised learning are based on pseudo fake reviews rather than real fake reviews. Working with Dianping, the largest Chinese review hosting site, we present the first reported work on fake review detection in Chinese with filtered reviews from Dianping's fake review detection system. Dianping's algorithm has a very high precision, but the recall is hard to know. This means that all fake reviews detected by the system are almost certainly fake but the remaining reviews (unknown set) may not be all genuine. Since the unknown set may contain many fake reviews, it is more appropriate to treat it as an unlabeled set. This calls for the model of learning from positive and unlabeled examples (PU learning). By leveraging the intricate dependencies among reviews, users and IP addresses, we first propose a collective classification algorithm called Multi-typed Heterogeneous Collective Classification (MHCC) and then extend it to Collective Positive and Unlabeled learning (CPU). Our experiments are conducted on real-life reviews of 500 restaurants in Shanghai, China. Results show that our proposed models can markedly improve the F1 scores of strong baselines in both PU and non-PU learning settings. Since our models only use language independent features, they can be easily generalized to other languages.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gloryk5发布了新的文献求助10
1秒前
芮Echo完成签到,获得积分10
2秒前
3秒前
wp4455777发布了新的文献求助10
3秒前
4秒前
msl发布了新的文献求助10
5秒前
JamesPei应助漂亮幻莲采纳,获得10
5秒前
5秒前
FashionBoy应助lilili采纳,获得10
5秒前
6秒前
6秒前
7秒前
Selenge发布了新的文献求助10
8秒前
9秒前
9秒前
9秒前
bkagyin应助foxp3采纳,获得10
10秒前
glowworm发布了新的文献求助10
10秒前
lc完成签到,获得积分20
10秒前
FuuKa完成签到,获得积分10
10秒前
11秒前
msl关闭了msl文献求助
11秒前
好困应助52hezi采纳,获得50
11秒前
在水一方应助冷酷达采纳,获得10
11秒前
gott完成签到,获得积分10
11秒前
wangyue发布了新的文献求助10
12秒前
13秒前
13秒前
菡han完成签到 ,获得积分10
13秒前
14秒前
甜甜圈发布了新的文献求助10
14秒前
贪玩菲音发布了新的文献求助10
14秒前
黄大师发布了新的文献求助10
14秒前
王杰完成签到,获得积分10
15秒前
冷傲雨寒完成签到,获得积分10
16秒前
林林完成签到,获得积分10
16秒前
gott发布了新的文献求助10
18秒前
渡劫完成签到,获得积分10
18秒前
namk完成签到,获得积分10
18秒前
卡乐瑞咩吹可给卡乐瑞咩吹可的求助进行了留言
19秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3123309
求助须知:如何正确求助?哪些是违规求助? 2773824
关于积分的说明 7719656
捐赠科研通 2429529
什么是DOI,文献DOI怎么找? 1290348
科研通“疑难数据库(出版商)”最低求助积分说明 621803
版权声明 600251