Structured Compressed Sensing: From Theory to Applications

压缩传感 计算机科学 桥接(联网) 范围(计算机科学) 信号处理 数据科学 光学(聚焦) 领域(数学) 理论计算机科学 信号(编程语言) 人工智能 电信 数学 物理 光学 程序设计语言 纯数学 雷达 计算机网络
作者
Marco F. Duarte,Yonina C. Eldar
出处
期刊:IEEE Transactions on Signal Processing [Institute of Electrical and Electronics Engineers]
卷期号:59 (9): 4053-4085 被引量:1078
标识
DOI:10.1109/tsp.2011.2161982
摘要

Compressed sensing (CS) is an emerging field that has attracted considerable research interest over the past few years. Previous review articles in CS limit their scope to standard discrete-to-discrete measurement architectures using matrices of randomized nature and signal models based on standard sparsity. In recent years, CS has worked its way into several new application areas. This, in turn, necessitates a fresh look on many of the basics of CS. The random matrix measurement operator must be replaced by more structured sensing architectures that correspond to the characteristics of feasible acquisition hardware. The standard sparsity prior has to be extended to include a much richer class of signals and to encode broader data models, including continuous-time signals. In our overview, the theme is exploiting signal and measurement structure in compressive sensing. The prime focus is bridging theory and practice; that is, to pinpoint the potential of structured CS strategies to emerge from the math to the hardware. Our summary highlights new directions as well as relations to more traditional CS, with the hope of serving both as a review to practitioners wanting to join this emerging field, and as a reference for researchers that attempts to put some of the existing ideas in perspective of practical applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
fanfan完成签到,获得积分10
1秒前
波妞发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
3秒前
fjnm发布了新的文献求助10
3秒前
浮浮世世发布了新的文献求助10
4秒前
4秒前
Wei完成签到,获得积分10
6秒前
6秒前
7秒前
liamddd完成签到 ,获得积分10
9秒前
半农完成签到,获得积分0
9秒前
Sun完成签到,获得积分20
10秒前
10秒前
啊啾发布了新的文献求助60
10秒前
11秒前
Wwww发布了新的文献求助10
11秒前
shadow完成签到,获得积分10
11秒前
11秒前
无语的宛白完成签到 ,获得积分10
12秒前
笑点低的衬衫完成签到,获得积分10
12秒前
人123456发布了新的文献求助10
13秒前
DG发布了新的文献求助10
14秒前
14秒前
研友_VZG7GZ应助52hzzz采纳,获得10
15秒前
量子星尘发布了新的文献求助10
15秒前
lily发布了新的文献求助10
15秒前
孙智远完成签到 ,获得积分10
17秒前
彭凯发布了新的文献求助10
18秒前
超级的绿凝完成签到,获得积分10
19秒前
李健应助小叶子采纳,获得10
20秒前
无语的宛白关注了科研通微信公众号
20秒前
脑洞疼应助科研通管家采纳,获得10
22秒前
科研通AI6应助科研通管家采纳,获得10
22秒前
22秒前
JamesPei应助科研通管家采纳,获得10
22秒前
星辰大海应助1101592875采纳,获得10
22秒前
量子星尘发布了新的文献求助10
22秒前
小蘑菇应助科研通管家采纳,获得10
22秒前
星辰大海应助科研通管家采纳,获得30
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 6000
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5675369
求助须知:如何正确求助?哪些是违规求助? 4945575
关于积分的说明 15152710
捐赠科研通 4834585
什么是DOI,文献DOI怎么找? 2589541
邀请新用户注册赠送积分活动 1543247
关于科研通互助平台的介绍 1501131