Structured Compressed Sensing: From Theory to Applications

压缩传感 计算机科学 桥接(联网) 范围(计算机科学) 信号处理 数据科学 光学(聚焦) 领域(数学) 理论计算机科学 信号(编程语言) 人工智能 电信 数学 物理 光学 程序设计语言 纯数学 雷达 计算机网络
作者
Marco F. Duarte,Yonina C. Eldar
出处
期刊:IEEE Transactions on Signal Processing [Institute of Electrical and Electronics Engineers]
卷期号:59 (9): 4053-4085 被引量:1078
标识
DOI:10.1109/tsp.2011.2161982
摘要

Compressed sensing (CS) is an emerging field that has attracted considerable research interest over the past few years. Previous review articles in CS limit their scope to standard discrete-to-discrete measurement architectures using matrices of randomized nature and signal models based on standard sparsity. In recent years, CS has worked its way into several new application areas. This, in turn, necessitates a fresh look on many of the basics of CS. The random matrix measurement operator must be replaced by more structured sensing architectures that correspond to the characteristics of feasible acquisition hardware. The standard sparsity prior has to be extended to include a much richer class of signals and to encode broader data models, including continuous-time signals. In our overview, the theme is exploiting signal and measurement structure in compressive sensing. The prime focus is bridging theory and practice; that is, to pinpoint the potential of structured CS strategies to emerge from the math to the hardware. Our summary highlights new directions as well as relations to more traditional CS, with the hope of serving both as a review to practitioners wanting to join this emerging field, and as a reference for researchers that attempts to put some of the existing ideas in perspective of practical applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
12发布了新的文献求助10
1秒前
脑洞疼应助Hibiscus95采纳,获得10
2秒前
雨中的诗柳完成签到,获得积分10
2秒前
3秒前
流川封完成签到,获得积分10
4秒前
Lexi完成签到,获得积分10
5秒前
Gideon完成签到,获得积分10
5秒前
6秒前
6秒前
6秒前
7秒前
赘婿应助yating采纳,获得10
7秒前
8秒前
9秒前
xudaniel发布了新的文献求助10
10秒前
G18960完成签到,获得积分10
11秒前
11秒前
3719left发布了新的文献求助10
12秒前
Angel发布了新的文献求助10
12秒前
xmn0717发布了新的文献求助10
14秒前
小鱼发布了新的文献求助10
15秒前
灵巧的导师完成签到,获得积分10
17秒前
Connor完成签到,获得积分10
18秒前
Hibiscus95发布了新的文献求助10
18秒前
Bugs完成签到,获得积分10
19秒前
cheng发布了新的文献求助10
19秒前
20秒前
爆米花应助2182265539采纳,获得10
21秒前
豆豆完成签到 ,获得积分10
22秒前
小闵发布了新的文献求助10
22秒前
啊怙纲完成签到 ,获得积分10
24秒前
科研通AI6.1应助小鱼采纳,获得10
25秒前
量子星尘发布了新的文献求助10
26秒前
28秒前
29秒前
小闵完成签到,获得积分10
29秒前
天天快乐应助现代雁桃采纳,获得10
30秒前
bin_zhang完成签到,获得积分10
30秒前
30秒前
量子星尘发布了新的文献求助10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5741889
求助须知:如何正确求助?哪些是违规求助? 5404554
关于积分的说明 15343509
捐赠科研通 4883431
什么是DOI,文献DOI怎么找? 2625018
邀请新用户注册赠送积分活动 1573876
关于科研通互助平台的介绍 1530812