Structured Compressed Sensing: From Theory to Applications

压缩传感 计算机科学 桥接(联网) 范围(计算机科学) 信号处理 数据科学 光学(聚焦) 领域(数学) 理论计算机科学 信号(编程语言) 人工智能 电信 数学 计算机网络 雷达 物理 纯数学 光学 程序设计语言
作者
Marco F. Duarte,Yonina C. Eldar
出处
期刊:IEEE Transactions on Signal Processing [Institute of Electrical and Electronics Engineers]
卷期号:59 (9): 4053-4085 被引量:1078
标识
DOI:10.1109/tsp.2011.2161982
摘要

Compressed sensing (CS) is an emerging field that has attracted considerable research interest over the past few years. Previous review articles in CS limit their scope to standard discrete-to-discrete measurement architectures using matrices of randomized nature and signal models based on standard sparsity. In recent years, CS has worked its way into several new application areas. This, in turn, necessitates a fresh look on many of the basics of CS. The random matrix measurement operator must be replaced by more structured sensing architectures that correspond to the characteristics of feasible acquisition hardware. The standard sparsity prior has to be extended to include a much richer class of signals and to encode broader data models, including continuous-time signals. In our overview, the theme is exploiting signal and measurement structure in compressive sensing. The prime focus is bridging theory and practice; that is, to pinpoint the potential of structured CS strategies to emerge from the math to the hardware. Our summary highlights new directions as well as relations to more traditional CS, with the hope of serving both as a review to practitioners wanting to join this emerging field, and as a reference for researchers that attempts to put some of the existing ideas in perspective of practical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助zixuanzhong采纳,获得10
刚刚
MrTStar发布了新的文献求助10
1秒前
小刘医生完成签到,获得积分10
2秒前
loski发布了新的文献求助10
2秒前
2秒前
高高菠萝完成签到 ,获得积分10
3秒前
卡卡西完成签到,获得积分10
3秒前
mark发布了新的文献求助10
4秒前
6秒前
传奇3应助Xw采纳,获得10
7秒前
8秒前
8秒前
别闹闹发布了新的文献求助10
11秒前
幸运星发布了新的文献求助10
11秒前
CipherSage应助mark采纳,获得10
13秒前
pluto应助从容的香菇采纳,获得10
13秒前
科研通AI5应助cccyq采纳,获得10
14秒前
科研狗完成签到,获得积分10
16秒前
英俊的铭应助gs19960828采纳,获得10
17秒前
MrTStar完成签到 ,获得积分10
19秒前
淡定的惜完成签到,获得积分20
22秒前
完美世界应助fengliurencai采纳,获得10
27秒前
思源应助大面包采纳,获得10
28秒前
sandra完成签到 ,获得积分10
29秒前
iris601完成签到,获得积分10
31秒前
时笙发布了新的文献求助30
33秒前
温柔的迎荷完成签到,获得积分10
35秒前
量子星尘发布了新的文献求助10
37秒前
38秒前
38秒前
传奇3应助快乐一江采纳,获得10
39秒前
传统的纸飞机完成签到 ,获得积分10
39秒前
39秒前
39秒前
王子安应助lilila666采纳,获得10
41秒前
大面包发布了新的文献求助10
42秒前
情怀应助漫山采纳,获得10
43秒前
zzz完成签到,获得积分10
44秒前
gs19960828发布了新的文献求助10
45秒前
幸福大白发布了新的文献求助30
45秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989406
求助须知:如何正确求助?哪些是违规求助? 3531522
关于积分的说明 11254187
捐赠科研通 3270174
什么是DOI,文献DOI怎么找? 1804901
邀请新用户注册赠送积分活动 882105
科研通“疑难数据库(出版商)”最低求助积分说明 809174