Patterning of sodium ions and the control of electrons in sodium cobaltate

离子 电子 凝聚态物理 中子衍射 超导电性 材料科学 化学 化学物理 物理 晶体结构 结晶学 有机化学 量子力学 冶金
作者
M. Röger,D. J. P. Morris,D. M. Tennant,M. Gutmann,J. P. Goff,J.-U. Hoffmann,R. Feyerherm,E. Dudzik,D. Prabhakaran,A. T. Boothroyd,Nic Shannon,B. Lake,P. P. Deen
出处
期刊:Nature [Springer Nature]
卷期号:445 (7128): 631-634 被引量:216
标识
DOI:10.1038/nature05531
摘要

The remarkable electronic and thermal properties of sodium cobaltate have made it a focus of much attention: it becomes superconducting when water molecules are interleaved between the cobalt oxide sheets, it has novel magnetic properties and high thermoelectric power. Recent work on the origin of these properties has highlighted unusual sodium ion patterning in the intercalation layers, and a new neutron diffraction and computational modelling study throws further light on the patterns and mechanisms of sodium ordering in this material. Na+ patterning is found to induce periodic fluctuations in Coulomb potential, which could play a decisive role in the transport and magnetic properties of sodium cobaltate. This work suggests the possibility of switching electron flow at the nanoscale by chemical and biochemical reactions with sodium. Sodium cobaltate (NaxCoO2) has emerged as a material of exceptional scientific interest due to the potential for thermoelectric applications1,2, and because the strong interplay between the magnetic and superconducting properties has led to close comparisons with the physics of the superconducting copper oxides3. The density x of the sodium in the intercalation layers can be altered electrochemically, directly changing the number of conduction electrons on the triangular Co layers4. Recent electron diffraction measurements reveal a kaleidoscope of Na+ ion patterns as a function of concentration5. Here we use single-crystal neutron diffraction supported by numerical simulations to determine the long-range three-dimensional superstructures of these ions. We show that the sodium ordering and its associated distortion field are governed by pure electrostatics, and that the organizational principle is the stabilization of charge droplets that order long range at some simple fractional fillings. Our results provide a good starting point to understand the electronic properties in terms of a Hubbard hamiltonian6 that takes into account the electrostatic potential from the Na superstructures. The resulting depth of potential wells in the Co layer is greater than the single-particle hopping kinetic energy and as a consequence, holes preferentially occupy the lowest potential regions. Thus we conclude that the Na+ ion patterning has a decisive role in the transport and magnetic properties.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
中科路2020发布了新的文献求助10
刚刚
欣欣完成签到 ,获得积分10
刚刚
3秒前
星辰大海应助可耐的安波采纳,获得10
3秒前
3秒前
孙扬完成签到,获得积分10
3秒前
3秒前
和谐初南完成签到,获得积分10
5秒前
pz发布了新的文献求助10
7秒前
Yiy发布了新的文献求助10
7秒前
8秒前
9秒前
zgy发布了新的文献求助10
9秒前
9秒前
酷波er应助liuliu采纳,获得10
11秒前
12秒前
15秒前
zgy完成签到,获得积分20
15秒前
Ternura发布了新的文献求助10
16秒前
yang发布了新的文献求助10
16秒前
19秒前
大模型应助内向一笑采纳,获得10
19秒前
阳光的中蓝完成签到,获得积分10
19秒前
可耐的晟睿完成签到 ,获得积分10
21秒前
我睡不醒啊完成签到,获得积分10
22秒前
小可爱啵完成签到,获得积分10
22秒前
喵了个喵发布了新的文献求助10
24秒前
丘比特应助畅快芝麻采纳,获得10
24秒前
深情安青应助Ternura采纳,获得10
25秒前
aa完成签到,获得积分10
25秒前
Akim应助高贵的惠采纳,获得10
25秒前
dalian完成签到 ,获得积分10
25秒前
pz发布了新的文献求助10
25秒前
26秒前
27秒前
28秒前
跳跃卿完成签到 ,获得积分10
30秒前
dianeluo完成签到,获得积分10
31秒前
33秒前
misa完成签到 ,获得积分10
33秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 纳米技术 物理 计算机科学 化学工程 基因 复合材料 遗传学 物理化学 免疫学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3416287
求助须知:如何正确求助?哪些是违规求助? 3018160
关于积分的说明 8883285
捐赠科研通 2705580
什么是DOI,文献DOI怎么找? 1483695
科研通“疑难数据库(出版商)”最低求助积分说明 685787
邀请新用户注册赠送积分活动 680931