Comparative Effectiveness of Machine Learning Approaches for Predicting Gastrointestinal Bleeds in Patients Receiving Antithrombotic Treatment

医学 抗血栓 队列 接收机工作特性 心房颤动 药店 回顾性队列研究 噻吩吡啶 内科学 队列研究 药方 阿司匹林 重症监护医学 氯吡格雷 家庭医学 药理学
作者
Jeph Herrin,Neena S. Abraham,Xiaoxi Yao,Peter A. Noseworthy,Jonathan Inselman,Nilay D. Shah,Che Ngufor
出处
期刊:JAMA network open [American Medical Association]
卷期号:4 (5): e2110703-e2110703 被引量:26
标识
DOI:10.1001/jamanetworkopen.2021.10703
摘要

Importance

Anticipating the risk of gastrointestinal bleeding (GIB) when initiating antithrombotic treatment (oral antiplatelets or anticoagulants) is limited by existing risk prediction models. Machine learning algorithms may result in superior predictive models to aid in clinical decision-making.

Objective

To compare the performance of 3 machine learning approaches with the commonly used HAS-BLED (hypertension, abnormal kidney and liver function, stroke, bleeding, labile international normalized ratio, older age, and drug or alcohol use) risk score in predicting antithrombotic-related GIB.

Design, Setting, and Participants

This retrospective cross-sectional study used data from the OptumLabs Data Warehouse, which contains medical and pharmacy claims on privately insured patients and Medicare Advantage enrollees in the US. The study cohort included patients 18 years or older with a history of atrial fibrillation, ischemic heart disease, or venous thromboembolism who were prescribed oral anticoagulant and/or thienopyridine antiplatelet agents between January 1, 2016, and December 31, 2019.

Exposures

A cohort of patients prescribed oral anticoagulant and thienopyridine antiplatelet agents was divided into development and validation cohorts based on date of index prescription. The development cohort was used to train 3 machine learning models to predict GIB at 6 and 12 months: regularized Cox proportional hazards regression (RegCox), random survival forests (RSF), and extreme gradient boosting (XGBoost).

Main Outcomes and Measures

The performance of the models for predicting GIB in the validation cohort, evaluated using the area under the receiver operating characteristic curve (AUC), sensitivity, specificity, positive predictive value, and prediction density plots. Relative importance scores were used to identify the variables that were most influential in the top-performing machine learning model.

Results

In the entire study cohort of 306 463 patients, 166 177 (54.2%) were male, 193 648 (63.2%) were White, the mean (SD) age was 69.0 (12.6) years, and 12 322 (4.0%) had experienced a GIB. In the validation data set, the HAS-BLED model had an AUC of 0.60 for predicting GIB at 6 months and 0.59 at 12 months. The RegCox model performed the best in the validation set, with an AUC of 0.67 at 6 months and 0.66 at 12 months. XGBoost was similar, with AUCs of 0.67 at 6 months and 0.66 at 12 months, whereas for RSF, AUCs were 0.62 at 6 months and 0.60 at 12 months. The variables with the highest importance scores in the RegCox model were prior GI bleed (importance score, 0.72); atrial fibrillation, ischemic heart disease, and venous thromboembolism combined (importance score, 0.38); and use of gastroprotective agents (importance score, 0.32).

Conclusions and Relevance

In this cross-sectional study, the machine learning models examined showed similar performance in identifying patients at high risk for GIB after being prescribed antithrombotic agents. Two models (RegCox and XGBoost) performed modestly better than the HAS-BLED score. A prospective evaluation of the RegCox model compared with HAS-BLED may provide a better understanding of the clinical impact of improved performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
从容幼南发布了新的文献求助10
1秒前
3秒前
婷婷发布了新的文献求助10
3秒前
3秒前
4秒前
5秒前
TINASURE完成签到,获得积分20
6秒前
Liuxinyan完成签到,获得积分10
7秒前
杯水还茶完成签到,获得积分10
7秒前
7秒前
cfplhys发布了新的文献求助10
8秒前
9秒前
爱吃香菜发布了新的文献求助10
9秒前
大花猫发布了新的文献求助20
9秒前
科目三应助淡淡夕阳采纳,获得10
9秒前
皮崇知发布了新的文献求助10
10秒前
10秒前
10秒前
科研牛马完成签到,获得积分20
12秒前
12秒前
12秒前
Jasper应助根根采纳,获得10
12秒前
岩下松风完成签到,获得积分10
13秒前
Gudeguy完成签到 ,获得积分10
13秒前
嗯哼哈哈完成签到,获得积分10
13秒前
淡淡夕阳发布了新的文献求助10
13秒前
wanci应助cx采纳,获得10
13秒前
脑洞疼应助发生了什么树采纳,获得10
13秒前
洪洪完成签到,获得积分20
13秒前
科研君完成签到,获得积分20
14秒前
李爱国应助令狐远航采纳,获得10
15秒前
科研通AI2S应助研友_nEjYyZ采纳,获得10
17秒前
DrugRD完成签到 ,获得积分10
17秒前
18秒前
18秒前
嗯哼哈哈发布了新的文献求助30
19秒前
小二郎应助wangayting采纳,获得10
19秒前
哈喽小雪完成签到,获得积分10
19秒前
19秒前
19秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966468
求助须知:如何正确求助?哪些是违规求助? 3511965
关于积分的说明 11161125
捐赠科研通 3246769
什么是DOI,文献DOI怎么找? 1793483
邀请新用户注册赠送积分活动 874482
科研通“疑难数据库(出版商)”最低求助积分说明 804403