Comparative Effectiveness of Machine Learning Approaches for Predicting Gastrointestinal Bleeds in Patients Receiving Antithrombotic Treatment

医学 抗血栓 队列 接收机工作特性 心房颤动 药店 回顾性队列研究 噻吩吡啶 内科学 队列研究 药方 阿司匹林 重症监护医学 氯吡格雷 药理学 家庭医学
作者
Jeph Herrin,Neena S. Abraham,Xiaoxi Yao,Peter A. Noseworthy,Jonathan Inselman,Nilay D. Shah,Che Ngufor
出处
期刊:JAMA network open [American Medical Association]
卷期号:4 (5): e2110703-e2110703 被引量:26
标识
DOI:10.1001/jamanetworkopen.2021.10703
摘要

Importance

Anticipating the risk of gastrointestinal bleeding (GIB) when initiating antithrombotic treatment (oral antiplatelets or anticoagulants) is limited by existing risk prediction models. Machine learning algorithms may result in superior predictive models to aid in clinical decision-making.

Objective

To compare the performance of 3 machine learning approaches with the commonly used HAS-BLED (hypertension, abnormal kidney and liver function, stroke, bleeding, labile international normalized ratio, older age, and drug or alcohol use) risk score in predicting antithrombotic-related GIB.

Design, Setting, and Participants

This retrospective cross-sectional study used data from the OptumLabs Data Warehouse, which contains medical and pharmacy claims on privately insured patients and Medicare Advantage enrollees in the US. The study cohort included patients 18 years or older with a history of atrial fibrillation, ischemic heart disease, or venous thromboembolism who were prescribed oral anticoagulant and/or thienopyridine antiplatelet agents between January 1, 2016, and December 31, 2019.

Exposures

A cohort of patients prescribed oral anticoagulant and thienopyridine antiplatelet agents was divided into development and validation cohorts based on date of index prescription. The development cohort was used to train 3 machine learning models to predict GIB at 6 and 12 months: regularized Cox proportional hazards regression (RegCox), random survival forests (RSF), and extreme gradient boosting (XGBoost).

Main Outcomes and Measures

The performance of the models for predicting GIB in the validation cohort, evaluated using the area under the receiver operating characteristic curve (AUC), sensitivity, specificity, positive predictive value, and prediction density plots. Relative importance scores were used to identify the variables that were most influential in the top-performing machine learning model.

Results

In the entire study cohort of 306 463 patients, 166 177 (54.2%) were male, 193 648 (63.2%) were White, the mean (SD) age was 69.0 (12.6) years, and 12 322 (4.0%) had experienced a GIB. In the validation data set, the HAS-BLED model had an AUC of 0.60 for predicting GIB at 6 months and 0.59 at 12 months. The RegCox model performed the best in the validation set, with an AUC of 0.67 at 6 months and 0.66 at 12 months. XGBoost was similar, with AUCs of 0.67 at 6 months and 0.66 at 12 months, whereas for RSF, AUCs were 0.62 at 6 months and 0.60 at 12 months. The variables with the highest importance scores in the RegCox model were prior GI bleed (importance score, 0.72); atrial fibrillation, ischemic heart disease, and venous thromboembolism combined (importance score, 0.38); and use of gastroprotective agents (importance score, 0.32).

Conclusions and Relevance

In this cross-sectional study, the machine learning models examined showed similar performance in identifying patients at high risk for GIB after being prescribed antithrombotic agents. Two models (RegCox and XGBoost) performed modestly better than the HAS-BLED score. A prospective evaluation of the RegCox model compared with HAS-BLED may provide a better understanding of the clinical impact of improved performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
臭皮完成签到,获得积分10
1秒前
张宁波完成签到,获得积分10
1秒前
叨叨完成签到,获得积分10
1秒前
每天都在迈入科研第一步完成签到,获得积分10
1秒前
lefora完成签到,获得积分10
1秒前
114555完成签到,获得积分10
3秒前
2026毕业啦完成签到,获得积分10
3秒前
稳重的秋天完成签到,获得积分10
3秒前
阿龙完成签到,获得积分10
4秒前
xy小侠女完成签到,获得积分10
4秒前
小丑岩完成签到,获得积分10
5秒前
惊天大幂幂完成签到,获得积分10
6秒前
开心的七完成签到,获得积分10
7秒前
孤独衣完成签到,获得积分10
7秒前
liushoujia完成签到,获得积分10
8秒前
陆晓亦完成签到,获得积分10
8秒前
张小苟完成签到,获得积分0
9秒前
草木完成签到,获得积分10
9秒前
lq完成签到,获得积分10
9秒前
nove999完成签到 ,获得积分10
9秒前
张文静完成签到,获得积分10
9秒前
zyqy完成签到 ,获得积分10
10秒前
Jes完成签到 ,获得积分10
11秒前
温眼张完成签到,获得积分10
11秒前
tiko完成签到,获得积分10
12秒前
sober完成签到,获得积分10
12秒前
懵懂的子骞完成签到 ,获得积分10
12秒前
MYYY完成签到,获得积分10
12秒前
Wonder完成签到,获得积分10
12秒前
星辰与月完成签到,获得积分10
12秒前
淡定的水彤完成签到,获得积分10
13秒前
66完成签到,获得积分10
14秒前
夜白完成签到,获得积分0
14秒前
feishao完成签到,获得积分10
14秒前
ezvsnoc完成签到,获得积分10
14秒前
简简单单完成签到,获得积分10
15秒前
swing完成签到 ,获得积分10
15秒前
lilli完成签到,获得积分0
16秒前
16秒前
啊七飞完成签到,获得积分10
17秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3466947
求助须知:如何正确求助?哪些是违规求助? 3059758
关于积分的说明 9067868
捐赠科研通 2750230
什么是DOI,文献DOI怎么找? 1509108
科研通“疑难数据库(出版商)”最低求助积分说明 697126
邀请新用户注册赠送积分活动 696953