亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

The effect of innovation-driven development on pollution reduction: Empirical evidence from a quasi-natural experiment in China

污染 内生性 中国 自然实验 比例(比率) 自然资源经济学 业务 环境经济学 经济 经济增长 政治学 地理 计量经济学 统计 生物 地图学 数学 法学 生态学
作者
Kang Gao,Yecheng Yuan
出处
期刊:Technological Forecasting and Social Change [Elsevier]
卷期号:172: 121047-121047 被引量:75
标识
DOI:10.1016/j.techfore.2021.121047
摘要

Under the dual pressures of slowing economic growth and increasing environmental pollution in China, there is no doubt that relying on innovation to promote pollution reduction is the key to achieving compatible development between economic growth and environmental quality. Since previous studies have mostly explored the relationship between the two from the perspective of technological innovation, the endogeneity problem makes the research results lack credibility. This study attempts to fill this gap. Constructing a quasi-natural experiment based on the national innovative city policy, this study explores the impact and mechanism of innovation-driven development on pollution reduction using propensity score matching(PSM) and difference-in-differences(DID) models. The results demonstrate that the construction of national innovative cities has a positive effect on the reduction of pollution emissions intensity, which is mainly achieved through the improvement of urban innovation level and industrial R&D personnel concentration but has not effectively promoted pollution reduction through the advanced industrial structure. Additionally, national innovative city policy exhibits heterogeneous effects on pollution reduction. Specifically, the pollution reduction effect of big cities is weaker than that of small and medium-sized cities. The greater the manufacturing scale and the degree of financial support for science and technology, the stronger the pollution reduction effects. The pollution reduction effect shows a non-linear mechanism as pollution emissions intensity increases, and the overall trend is upward. Accordingly, corresponding policy recommendations are put forward based on the current weakness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
huangzsdy完成签到,获得积分10
16秒前
空白完成签到 ,获得积分10
52秒前
1分钟前
Kylin发布了新的文献求助30
1分钟前
立邦芝士完成签到,获得积分10
1分钟前
科研通AI2S应助Zhou采纳,获得10
2分钟前
2分钟前
chenchen发布了新的文献求助10
2分钟前
充电宝应助小白果果采纳,获得10
2分钟前
2分钟前
小白果果发布了新的文献求助10
2分钟前
2分钟前
无花果应助科研通管家采纳,获得10
2分钟前
chenchen完成签到,获得积分10
2分钟前
科研通AI5应助研友_LNBgkL采纳,获得10
2分钟前
bcc666发布了新的文献求助10
2分钟前
万能图书馆应助bcc666采纳,获得10
3分钟前
CY完成签到,获得积分10
3分钟前
3分钟前
研友_LNBgkL发布了新的文献求助10
3分钟前
3分钟前
4分钟前
chenchen发布了新的文献求助10
4分钟前
4分钟前
chenchen关注了科研通微信公众号
4分钟前
4分钟前
4分钟前
5分钟前
hywang发布了新的文献求助10
5分钟前
6分钟前
ET完成签到,获得积分10
6分钟前
sys666发布了新的文献求助10
6分钟前
科研通AI5应助sys666采纳,获得10
6分钟前
sys666完成签到,获得积分20
6分钟前
qqq发布了新的文献求助10
6分钟前
和谐板栗完成签到 ,获得积分10
6分钟前
6分钟前
丘比特应助小白果果采纳,获得10
7分钟前
唔食鸡蛋黄完成签到,获得积分10
7分钟前
今后应助努力科研采纳,获得30
7分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555754
求助须知:如何正确求助?哪些是违规求助? 3131355
关于积分的说明 9390876
捐赠科研通 2831075
什么是DOI,文献DOI怎么找? 1556317
邀请新用户注册赠送积分活动 726502
科研通“疑难数据库(出版商)”最低求助积分说明 715820