Gaussian accelerated molecular dynamics: Principles and applications

分子动力学 生物分子 高斯分布 能源景观 分子生物物理学 生物系统 伞式取样 采样(信号处理) 化学 复制品 计算机科学 计算化学 统计物理学 物理 生物 艺术 视觉艺术 滤波器(信号处理) 生物化学 计算机视觉
作者
Jinan Wang,Pablo Arantes,Apurba Bhattarai,Rohaine V. Hsu,Shristi Pawnikar,Yu‐ming M. Huang,Giulia Palermo,Yinglong Miao
出处
期刊:Wiley Interdisciplinary Reviews: Computational Molecular Science [Wiley]
卷期号:11 (5) 被引量:273
标识
DOI:10.1002/wcms.1521
摘要

Abstract Gaussian accelerated molecular dynamics (GaMD) is a robust computational method for simultaneous unconstrained enhanced sampling and free energy calculations of biomolecules. It works by adding a harmonic boost potential to smooth biomolecular potential energy surface and reduce energy barriers. GaMD greatly accelerates biomolecular simulations by orders of magnitude. Without the need to set predefined reaction coordinates or collective variables, GaMD provides unconstrained enhanced sampling and is advantageous for simulating complex biological processes. The GaMD boost potential exhibits a Gaussian distribution, thereby allowing for energetic reweighting via cumulant expansion to the second order (i.e., “Gaussian approximation”). This leads to accurate reconstruction of free energy landscapes of biomolecules. Hybrid schemes with other enhanced sampling methods, such as the replica‐exchange GaMD (rex‐GaMD) and replica‐exchange umbrella sampling GaMD (GaREUS), have also been introduced, further improving sampling and free energy calculations. Recently, new “selective GaMD” algorithms including the Ligand GaMD (LiGaMD) and Peptide GaMD (Pep‐GaMD) enabled microsecond simulations to capture repetitive dissociation and binding of small‐molecule ligands and highly flexible peptides. The simulations then allowed highly efficient quantitative characterization of the ligand/peptide binding thermodynamics and kinetics. Taken together, GaMD and its innovative variants are applicable to simulate a wide variety of biomolecular dynamics, including protein folding, conformational changes and allostery, ligand binding, peptide binding, protein–protein/nucleic acid/carbohydrate interactions, and carbohydrate/nucleic acid interactions. In this review, we present principles of the GaMD algorithms and recent applications in biomolecular simulations and drug design. This article is categorized under: Structure and Mechanism > Computational Biochemistry and Biophysics Molecular and Statistical Mechanics > Molecular Dynamics and Monte‐Carlo Methods Molecular and Statistical Mechanics > Free Energy Methods
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
LB完成签到,获得积分10
2秒前
2秒前
领导范儿应助Druvis采纳,获得10
2秒前
66677788发布了新的文献求助10
2秒前
风风风完成签到,获得积分10
2秒前
3秒前
ZhouZhou发布了新的文献求助10
3秒前
hu123发布了新的文献求助10
4秒前
浮游应助onCreate采纳,获得10
4秒前
4秒前
4秒前
weing发布了新的文献求助10
4秒前
鸣风完成签到,获得积分10
5秒前
6秒前
共享精神应助LMF采纳,获得10
6秒前
忍冬完成签到,获得积分10
6秒前
邓先生完成签到,获得积分10
6秒前
JunfDai完成签到,获得积分10
7秒前
LL发布了新的文献求助10
7秒前
卡卡发布了新的文献求助30
7秒前
7秒前
8秒前
LB发布了新的文献求助10
8秒前
lele关注了科研通微信公众号
8秒前
所所应助刚睡醒采纳,获得10
8秒前
Druvis完成签到,获得积分10
9秒前
Rsoup发布了新的文献求助10
9秒前
9秒前
10秒前
牛许禄发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
10秒前
11秒前
hawz完成签到,获得积分10
11秒前
11秒前
体贴乐巧完成签到,获得积分10
11秒前
忍冬发布了新的文献求助10
12秒前
12秒前
Snowychen完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5468720
求助须知:如何正确求助?哪些是违规求助? 4572113
关于积分的说明 14333499
捐赠科研通 4498847
什么是DOI,文献DOI怎么找? 2464734
邀请新用户注册赠送积分活动 1453361
关于科研通互助平台的介绍 1427921