Gaussian accelerated molecular dynamics: Principles and applications

分子动力学 生物分子 高斯分布 能源景观 分子生物物理学 生物系统 伞式取样 采样(信号处理) 化学 复制品 计算机科学 计算化学 统计物理学 物理 生物 艺术 视觉艺术 滤波器(信号处理) 生物化学 计算机视觉
作者
Jinan Wang,Pablo Arantes,Apurba Bhattarai,Rohaine V. Hsu,Shristi Pawnikar,Yu‐ming M. Huang,Giulia Palermo,Yinglong Miao
出处
期刊:Wiley Interdisciplinary Reviews: Computational Molecular Science [Wiley]
卷期号:11 (5) 被引量:181
标识
DOI:10.1002/wcms.1521
摘要

Abstract Gaussian accelerated molecular dynamics (GaMD) is a robust computational method for simultaneous unconstrained enhanced sampling and free energy calculations of biomolecules. It works by adding a harmonic boost potential to smooth biomolecular potential energy surface and reduce energy barriers. GaMD greatly accelerates biomolecular simulations by orders of magnitude. Without the need to set predefined reaction coordinates or collective variables, GaMD provides unconstrained enhanced sampling and is advantageous for simulating complex biological processes. The GaMD boost potential exhibits a Gaussian distribution, thereby allowing for energetic reweighting via cumulant expansion to the second order (i.e., “Gaussian approximation”). This leads to accurate reconstruction of free energy landscapes of biomolecules. Hybrid schemes with other enhanced sampling methods, such as the replica‐exchange GaMD (rex‐GaMD) and replica‐exchange umbrella sampling GaMD (GaREUS), have also been introduced, further improving sampling and free energy calculations. Recently, new “selective GaMD” algorithms including the Ligand GaMD (LiGaMD) and Peptide GaMD (Pep‐GaMD) enabled microsecond simulations to capture repetitive dissociation and binding of small‐molecule ligands and highly flexible peptides. The simulations then allowed highly efficient quantitative characterization of the ligand/peptide binding thermodynamics and kinetics. Taken together, GaMD and its innovative variants are applicable to simulate a wide variety of biomolecular dynamics, including protein folding, conformational changes and allostery, ligand binding, peptide binding, protein–protein/nucleic acid/carbohydrate interactions, and carbohydrate/nucleic acid interactions. In this review, we present principles of the GaMD algorithms and recent applications in biomolecular simulations and drug design. This article is categorized under: Structure and Mechanism > Computational Biochemistry and Biophysics Molecular and Statistical Mechanics > Molecular Dynamics and Monte‐Carlo Methods Molecular and Statistical Mechanics > Free Energy Methods
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
快不了完成签到,获得积分10
3秒前
姜呱呱呱完成签到,获得积分10
4秒前
7秒前
10秒前
鲤鱼不吐泡泡完成签到 ,获得积分10
10秒前
kaka091完成签到,获得积分10
12秒前
14秒前
16秒前
llllly发布了新的文献求助10
16秒前
赵宏岩发布了新的文献求助10
17秒前
17秒前
Owen应助俭朴的世立采纳,获得10
18秒前
Progie应助呼啦呼啦采纳,获得10
18秒前
干净翠桃完成签到,获得积分10
19秒前
20秒前
quan完成签到 ,获得积分10
20秒前
善学以致用应助bestbanana采纳,获得10
21秒前
March完成签到,获得积分10
21秒前
荔枝要吃冰的完成签到 ,获得积分20
22秒前
LL发布了新的文献求助10
22秒前
23秒前
hcmsaobang2001完成签到,获得积分10
23秒前
Xiong发布了新的文献求助10
23秒前
llllly完成签到,获得积分10
25秒前
26秒前
星星发布了新的文献求助10
26秒前
星星完成签到,获得积分20
26秒前
Iris发布了新的文献求助10
29秒前
30秒前
callous完成签到,获得积分10
32秒前
32秒前
科研通AI2S应助杜林采纳,获得10
33秒前
畅快的念烟完成签到,获得积分10
35秒前
36秒前
我是老大应助科研通管家采纳,获得30
38秒前
充电宝应助科研通管家采纳,获得30
38秒前
打打应助科研通管家采纳,获得10
38秒前
所所应助科研通管家采纳,获得30
38秒前
Lucas应助科研通管家采纳,获得10
38秒前
领导范儿应助科研通管家采纳,获得10
38秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137814
求助须知:如何正确求助?哪些是违规求助? 2788675
关于积分的说明 7788104
捐赠科研通 2445088
什么是DOI,文献DOI怎么找? 1300139
科研通“疑难数据库(出版商)”最低求助积分说明 625828
版权声明 601043