亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Development of QSAR models for prediction of fish bioconcentration factors using physicochemical properties and molecular descriptors with machine learning algorithms

数量结构-活动关系 生物浓缩 分子描述符 随机森林 机器学习 决策树 梯度升压 支持向量机 计算机科学 人工智能 生物系统 化学 生化工程 环境化学 生物累积 生物 工程类 渔业
作者
Yoshiyuki Kobayashi,Kenichi Yoshida
出处
期刊:Ecological Informatics [Elsevier]
卷期号:63: 101285-101285 被引量:16
标识
DOI:10.1016/j.ecoinf.2021.101285
摘要

Bioconcentration factors (BCFs) are indicators of the accumulation of chemical substances in organisms; they play an important role in the environmental risk assessment of various chemical substances. Experiments to obtain BCFs are expensive and time consuming; hence, it is desirable to predictively determine BCF during the early stage of chemical development. In this study, we developed a quantitative structure-activity relationship (QSAR) model using physicochemical properties, environmental fate endpoints, and molecular descriptors. Physicochemical properties and environmental fate endpoints were generated by OPERA, which is a QSAR software. Moreover, we calculated the molecular descriptors using Mordred. A gradient boosting decision tree model was developed as a machine learning model, and multiple linear regression and support vector machine models were developed for comparison. Our developed model showed that the coefficients of determination (R2) of the training and test sets were 0.923 and 0.863, respectively, which are higher than the predictions of the previous model and values calculated by OPERA. The results obtained from the present study suggest that an accurate QSAR model can be developed using the physicochemical properties, environmental fate endpoints, and molecular descriptors calculated from the chemical structure without actually conducting BCF experiments. The model could be one of the choice for the preliminary risk assessment without investing in a large number of BCF experiments during the early development stages of candidate chemicals.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
Orange应助难过的访文采纳,获得10
3秒前
4秒前
布曲完成签到 ,获得积分10
6秒前
chenchen发布了新的文献求助10
7秒前
70关注了科研通微信公众号
7秒前
8秒前
天天开心完成签到,获得积分10
10秒前
10秒前
旺仔完成签到,获得积分10
12秒前
cmmm完成签到 ,获得积分10
13秒前
Orange应助chenchen采纳,获得10
14秒前
天天开心发布了新的文献求助10
15秒前
贪玩丸子完成签到 ,获得积分10
18秒前
诚心的访蕊完成签到 ,获得积分10
18秒前
21秒前
chenchen完成签到,获得积分10
21秒前
CipherSage应助PAIDAXXXX采纳,获得10
26秒前
情怀应助西红柿与外太空采纳,获得10
31秒前
赫连人杰完成签到 ,获得积分10
32秒前
齐桉完成签到 ,获得积分10
35秒前
阿姨洗铁路完成签到 ,获得积分10
44秒前
帅气的香之完成签到,获得积分10
47秒前
dadabad完成签到 ,获得积分10
47秒前
情怀应助里vh采纳,获得10
52秒前
互助应助70采纳,获得10
56秒前
58秒前
CodeCraft应助时空星客采纳,获得10
1分钟前
PAIDAXXXX发布了新的文献求助10
1分钟前
ccc完成签到,获得积分10
1分钟前
LAN完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
时空星客发布了新的文献求助10
1分钟前
1分钟前
繁星背后完成签到,获得积分10
1分钟前
Reborn应助科研通管家采纳,获得10
1分钟前
Hello应助科研通管家采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Elastography for characterization of focal liver lesions: current evidence and future perspectives 200
Mastering Prompt Engineering: A Complete Guide 200
Elastography for characterization of focal liver lesions: current evidence and future perspectives 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5870591
求助须知:如何正确求助?哪些是违规求助? 6463951
关于积分的说明 15664463
捐赠科研通 4986675
什么是DOI,文献DOI怎么找? 2688931
邀请新用户注册赠送积分活动 1631313
关于科研通互助平台的介绍 1589367