Development of QSAR models for prediction of fish bioconcentration factors using physicochemical properties and molecular descriptors with machine learning algorithms

数量结构-活动关系 生物浓缩 分子描述符 随机森林 机器学习 决策树 梯度升压 支持向量机 计算机科学 人工智能 生物系统 化学 生化工程 环境化学 生物累积 生物 工程类 渔业
作者
Yoshiyuki Kobayashi,Kenichi Yoshida
出处
期刊:Ecological Informatics [Elsevier]
卷期号:63: 101285-101285 被引量:16
标识
DOI:10.1016/j.ecoinf.2021.101285
摘要

Bioconcentration factors (BCFs) are indicators of the accumulation of chemical substances in organisms; they play an important role in the environmental risk assessment of various chemical substances. Experiments to obtain BCFs are expensive and time consuming; hence, it is desirable to predictively determine BCF during the early stage of chemical development. In this study, we developed a quantitative structure-activity relationship (QSAR) model using physicochemical properties, environmental fate endpoints, and molecular descriptors. Physicochemical properties and environmental fate endpoints were generated by OPERA, which is a QSAR software. Moreover, we calculated the molecular descriptors using Mordred. A gradient boosting decision tree model was developed as a machine learning model, and multiple linear regression and support vector machine models were developed for comparison. Our developed model showed that the coefficients of determination (R2) of the training and test sets were 0.923 and 0.863, respectively, which are higher than the predictions of the previous model and values calculated by OPERA. The results obtained from the present study suggest that an accurate QSAR model can be developed using the physicochemical properties, environmental fate endpoints, and molecular descriptors calculated from the chemical structure without actually conducting BCF experiments. The model could be one of the choice for the preliminary risk assessment without investing in a large number of BCF experiments during the early development stages of candidate chemicals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sankumao发布了新的文献求助30
刚刚
奋斗的盼柳完成签到 ,获得积分10
1秒前
2秒前
Jasper应助handsomecat采纳,获得10
2秒前
2秒前
李雪完成签到,获得积分10
3秒前
3秒前
sv发布了新的文献求助10
5秒前
小田完成签到,获得积分10
5秒前
茶茶完成签到,获得积分20
5秒前
苏兴龙完成签到,获得积分10
5秒前
坚强的亦云-333完成签到,获得积分10
5秒前
Ava应助dan1029采纳,获得10
6秒前
6秒前
6秒前
奶糖最可爱完成签到,获得积分10
7秒前
7秒前
mojomars发布了新的文献求助10
8秒前
幽壑之潜蛟应助茶茶采纳,获得10
8秒前
9秒前
9秒前
9秒前
迅速海云完成签到,获得积分10
9秒前
sjxx发布了新的文献求助10
9秒前
9秒前
乐乐应助Rachel采纳,获得10
10秒前
10秒前
10秒前
天天快乐应助孤独的珩采纳,获得10
11秒前
帅气鹭洋发布了新的文献求助20
11秒前
12秒前
孙悦发布了新的文献求助10
12秒前
知性的绮兰完成签到,获得积分10
12秒前
12秒前
13秒前
Zzzoey完成签到,获得积分10
14秒前
14秒前
14秒前
英姑应助桂魄采纳,获得10
14秒前
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794