Lossy Point Cloud Geometry Compression via Region-Wise Processing

计算机科学 八叉树 数据压缩 几何处理 有损压缩 无损压缩 聚类分析 点云 杠杆(统计) 算法 计算机视觉 几何学 人工智能 拓扑(电路) 多边形网格 数学 组合数学
作者
Wenjie Zhu,Yiling Xu,Dandan Ding,Zhan Ma,Mike Nilsson
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:31 (12): 4575-4589 被引量:16
标识
DOI:10.1109/tcsvt.2021.3101852
摘要

Point cloud geometry (PCG) is used to precisely represent arbitrary-shaped 3D objects and scenes, is of great interest to vast applications which puts forward the pressing desire of high-efficiency PCG compression for transmission and storage. Existing PCG coding mostly relies on the octree model by which point-wise processing is applied without exploring nonlocal regional geometry similarity across the entire 3D surface. This work, instead, suggests the region-wise processing to leverage the region similarity to exploit inter-region redundancy for efficient lossy point cloud geometry compression. Towards this goal, a given PCG is first segmented into numerous local regions each of which comprises a portion of point cloud surface, and can be represented by a surface vector that describes the geometry shape numerically in a projected principal space. Subsequently, these regions are grouped into several discriminative clusters, assuring that inter-cluster similarity is minimized and intra-cluster similarity is maximized simultaneously, where the similarity is calculated using the regional surface vectors. In each cluster, we set a reference region having the largest similarity score to the others, which enables the non-reference region prediction from the reference one using alignment transform. In the end, we encode the reference regions directly using the lossless mode of the Geometry-based Point Cloud Compression (G-PCC), while corresponding non-reference regions are signaled using associated transform parameters. Compared with the state-of-the-art G-PCC using octree model, our region-wise approach can offer remarkable coding efficiency improvement, e.g., 32.4% and 22.0% Bjontegaard-delta rate (BD-Rate) gains for respective point-to-point ( $D1$ ) and point-to-plane ( $D2$ ) distortion evaluations, across a variety of common test sequences used in standard committee.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
邓佳鑫Alan应助111111采纳,获得10
刚刚
爆米花应助天天开心采纳,获得10
刚刚
刚刚
小橙完成签到 ,获得积分10
1秒前
1秒前
Tourist应助渣渣XM采纳,获得10
1秒前
2秒前
Akim应助韶明雪采纳,获得10
2秒前
呜呜给你两拳完成签到,获得积分10
2秒前
风清扬发布了新的文献求助10
3秒前
zjynb666完成签到,获得积分10
3秒前
3秒前
3秒前
4秒前
4秒前
yi发布了新的文献求助10
4秒前
十页的文章完成签到,获得积分10
4秒前
852应助Lixiang采纳,获得100
4秒前
wxs发布了新的文献求助10
4秒前
4秒前
汉堡包应助An采纳,获得10
5秒前
NexusExplorer应助leo采纳,获得10
5秒前
6秒前
糟糕的颜完成签到 ,获得积分10
6秒前
坚定的雁完成签到 ,获得积分10
6秒前
随机昵称发布了新的文献求助30
6秒前
典雅的阑悦完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
淡然善斓发布了新的文献求助10
7秒前
sdd完成签到,获得积分10
7秒前
bible完成签到,获得积分10
8秒前
8秒前
顾矜应助isyfear采纳,获得10
8秒前
8秒前
橘涂初九发布了新的文献求助20
8秒前
ddddd发布了新的文献求助10
8秒前
酷波er应助默默的甜瓜采纳,获得10
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624445
求助须知:如何正确求助?哪些是违规求助? 4710318
关于积分的说明 14950073
捐赠科研通 4778363
什么是DOI,文献DOI怎么找? 2553244
邀请新用户注册赠送积分活动 1515179
关于科研通互助平台的介绍 1475520