Lossy Point Cloud Geometry Compression via Region-Wise Processing

计算机科学 八叉树 数据压缩 几何处理 有损压缩 无损压缩 聚类分析 点云 杠杆(统计) 算法 计算机视觉 几何学 人工智能 拓扑(电路) 多边形网格 数学 组合数学
作者
Wenjie Zhu,Yiling Xu,Dandan Ding,Zhan Ma,Mike Nilsson
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:31 (12): 4575-4589 被引量:16
标识
DOI:10.1109/tcsvt.2021.3101852
摘要

Point cloud geometry (PCG) is used to precisely represent arbitrary-shaped 3D objects and scenes, is of great interest to vast applications which puts forward the pressing desire of high-efficiency PCG compression for transmission and storage. Existing PCG coding mostly relies on the octree model by which point-wise processing is applied without exploring nonlocal regional geometry similarity across the entire 3D surface. This work, instead, suggests the region-wise processing to leverage the region similarity to exploit inter-region redundancy for efficient lossy point cloud geometry compression. Towards this goal, a given PCG is first segmented into numerous local regions each of which comprises a portion of point cloud surface, and can be represented by a surface vector that describes the geometry shape numerically in a projected principal space. Subsequently, these regions are grouped into several discriminative clusters, assuring that inter-cluster similarity is minimized and intra-cluster similarity is maximized simultaneously, where the similarity is calculated using the regional surface vectors. In each cluster, we set a reference region having the largest similarity score to the others, which enables the non-reference region prediction from the reference one using alignment transform. In the end, we encode the reference regions directly using the lossless mode of the Geometry-based Point Cloud Compression (G-PCC), while corresponding non-reference regions are signaled using associated transform parameters. Compared with the state-of-the-art G-PCC using octree model, our region-wise approach can offer remarkable coding efficiency improvement, e.g., 32.4% and 22.0% Bjontegaard-delta rate (BD-Rate) gains for respective point-to-point ( $D1$ ) and point-to-plane ( $D2$ ) distortion evaluations, across a variety of common test sequences used in standard committee.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sunnyyty发布了新的文献求助10
1秒前
tanjianxin发布了新的文献求助10
1秒前
JIE发布了新的文献求助10
1秒前
安娜完成签到,获得积分10
1秒前
怕黑砖头发布了新的文献求助10
2秒前
科目三应助饭小心采纳,获得10
2秒前
2秒前
科研通AI2S应助花陵采纳,获得10
2秒前
善学以致用应助大吴克采纳,获得10
4秒前
老实雁蓉完成签到,获得积分10
4秒前
良辰应助zjh采纳,获得10
4秒前
yulong完成签到 ,获得积分10
5秒前
热心的早晨完成签到,获得积分10
5秒前
如此纠结完成签到,获得积分10
5秒前
多多就是小豆芽完成签到 ,获得积分10
6秒前
6秒前
Owen应助Lwxbb采纳,获得10
6秒前
不戴眼镜的眼镜王蛇完成签到,获得积分10
6秒前
小小杜完成签到,获得积分10
6秒前
初心完成签到,获得积分20
6秒前
丽丽完成签到 ,获得积分10
6秒前
学术蟑螂发布了新的文献求助10
6秒前
文艺的竺完成签到,获得积分10
7秒前
小林太郎应助斯奈克采纳,获得20
7秒前
7秒前
情怀应助执笔曦倾年采纳,获得10
7秒前
7秒前
7秒前
7秒前
科研民工完成签到,获得积分10
8秒前
FR完成签到,获得积分10
8秒前
9秒前
小马甲应助浩浩大人采纳,获得10
9秒前
9秒前
小小杜发布了新的文献求助20
9秒前
打打应助袁国惠采纳,获得10
9秒前
9秒前
哈哈哈完成签到,获得积分10
10秒前
小张发布了新的文献求助10
10秒前
温柔若完成签到,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740