Lossy Point Cloud Geometry Compression via Region-Wise Processing

计算机科学 八叉树 数据压缩 几何处理 有损压缩 无损压缩 聚类分析 点云 杠杆(统计) 算法 计算机视觉 几何学 人工智能 拓扑(电路) 多边形网格 数学 组合数学
作者
Wenjie Zhu,Yiling Xu,Dandan Ding,Zhan Ma,Mike Nilsson
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:31 (12): 4575-4589 被引量:16
标识
DOI:10.1109/tcsvt.2021.3101852
摘要

Point cloud geometry (PCG) is used to precisely represent arbitrary-shaped 3D objects and scenes, is of great interest to vast applications which puts forward the pressing desire of high-efficiency PCG compression for transmission and storage. Existing PCG coding mostly relies on the octree model by which point-wise processing is applied without exploring nonlocal regional geometry similarity across the entire 3D surface. This work, instead, suggests the region-wise processing to leverage the region similarity to exploit inter-region redundancy for efficient lossy point cloud geometry compression. Towards this goal, a given PCG is first segmented into numerous local regions each of which comprises a portion of point cloud surface, and can be represented by a surface vector that describes the geometry shape numerically in a projected principal space. Subsequently, these regions are grouped into several discriminative clusters, assuring that inter-cluster similarity is minimized and intra-cluster similarity is maximized simultaneously, where the similarity is calculated using the regional surface vectors. In each cluster, we set a reference region having the largest similarity score to the others, which enables the non-reference region prediction from the reference one using alignment transform. In the end, we encode the reference regions directly using the lossless mode of the Geometry-based Point Cloud Compression (G-PCC), while corresponding non-reference regions are signaled using associated transform parameters. Compared with the state-of-the-art G-PCC using octree model, our region-wise approach can offer remarkable coding efficiency improvement, e.g., 32.4% and 22.0% Bjontegaard-delta rate (BD-Rate) gains for respective point-to-point ( $D1$ ) and point-to-plane ( $D2$ ) distortion evaluations, across a variety of common test sequences used in standard committee.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
蓝天发布了新的文献求助10
2秒前
Akim应助春花采纳,获得10
2秒前
youy发布了新的文献求助20
2秒前
3秒前
多情易蓉完成签到,获得积分10
3秒前
3秒前
微光完成签到,获得积分10
3秒前
毛毛完成签到,获得积分10
4秒前
4秒前
大大怪发布了新的文献求助20
4秒前
5秒前
5秒前
斯文败类应助欣慰雪巧采纳,获得10
6秒前
梅菜菜完成签到,获得积分10
6秒前
8秒前
Hello应助zyx采纳,获得10
9秒前
9秒前
学术小白完成签到,获得积分10
9秒前
9秒前
梅菜菜发布了新的文献求助10
9秒前
舒克发布了新的文献求助10
10秒前
Rgly完成签到 ,获得积分10
10秒前
负责中恶完成签到,获得积分10
11秒前
chihiro完成签到,获得积分20
11秒前
墨琼琼应助科研通管家采纳,获得10
11秒前
墨琼琼应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
Owen应助科研通管家采纳,获得10
12秒前
Owen应助科研通管家采纳,获得10
12秒前
李爱国应助科研通管家采纳,获得10
12秒前
李爱国应助科研通管家采纳,获得10
12秒前
田様应助科研通管家采纳,获得10
12秒前
12秒前
田様应助科研通管家采纳,获得10
12秒前
12秒前
搜集达人应助科研通管家采纳,获得10
12秒前
hsr_eye完成签到,获得积分10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
从k到英国情人 1700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5776553
求助须知:如何正确求助?哪些是违规求助? 5629807
关于积分的说明 15443193
捐赠科研通 4908648
什么是DOI,文献DOI怎么找? 2641367
邀请新用户注册赠送积分活动 1589320
关于科研通互助平台的介绍 1543933