A comprehensive review on the recent developments in transition metal-based electrocatalysts for oxygen evolution reaction

电催化剂 析氧 分解水 过渡金属 氧化物 纳米技术 材料科学 电化学能量转换 化学 冶金 物理化学 催化作用 电化学 电极 生物化学 光催化
作者
Ashalatha Vazhayil,Linsha Vazhayal,Jasmine Thomas,Shyamli Ashok C,Nygil Thomas
出处
期刊:Applied surface science advances [Elsevier]
卷期号:6: 100184-100184 被引量:138
标识
DOI:10.1016/j.apsadv.2021.100184
摘要

Oxygen evolution reaction (OER) is one of the key electrocatalysis technologies for the development of renewable energy conversion and storage systems like water splitting, metal-air batteries, and fuel cells. For the large-scale application of these technologies, highly efficient, low cost and stable electrocatalysts are very important. Recently, non-noble metal-based OER electrocatalyst has drawn fabulous research interest. Albeit, it may be difficult to include all the studies, this review aims to look over the recent progress and offer a comprehensive insight toward the OER. It begins with a fundamental introduction to the electrochemistry of OER electrocatalyst including the synthesis, and mechanism. In this review, a comprehensive investigation is made on various types of nanostructured materials including Co, Ni, Mn, Fe, Cu, and Zn-based transition metal oxide and multi-metal oxides such as spinels, perovskites, and layered double hydroxides. The crucial factors that are used to tune the activity of the catalyst towards OER are summarized, including nanostructure development, phase, morphology, crystal facet, defect, mixed-metal, and strain engineering for metal oxide, heteroatom doping, topological defects, and formation of metal-N-C composites. Finally, major applications, the current states challenges, and some perspectives for non-noble-metal-based OER electrocatalysts are discussed. This review will help to explore and develop better catalysts and units for practical applications and will offer a basic understanding of the OER process along with the standard parameters to evaluate the performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yy发布了新的文献求助10
1秒前
ibigbird完成签到,获得积分10
1秒前
张才豪完成签到,获得积分10
1秒前
2秒前
melon发布了新的文献求助10
3秒前
方秋发布了新的文献求助10
3秒前
isabellae完成签到 ,获得积分10
4秒前
maolizi发布了新的文献求助10
4秒前
4秒前
Sicily完成签到,获得积分10
4秒前
1233完成签到,获得积分10
5秒前
5秒前
5秒前
从容芮应助ibigbird采纳,获得10
6秒前
情怀应助园yuan采纳,获得10
7秒前
zyy201036完成签到,获得积分10
7秒前
8秒前
labxgr完成签到,获得积分10
10秒前
英姑应助平淡冬亦采纳,获得10
10秒前
fillippo99应助小田采纳,获得10
11秒前
11秒前
Able阿拉基完成签到,获得积分10
12秒前
12秒前
song完成签到,获得积分10
12秒前
998877剑指完成签到,获得积分10
13秒前
星辰大海应助不想学习鸭采纳,获得30
14秒前
嘉心糖应助可靠的映秋采纳,获得20
14秒前
17秒前
pp若若gg完成签到,获得积分10
17秒前
鲤小鱼完成签到,获得积分10
18秒前
Jing完成签到,获得积分10
18秒前
英姑应助快乐疯样采纳,获得10
18秒前
希希发布了新的文献求助10
18秒前
湛刘佳完成签到 ,获得积分10
19秒前
研友_24789发布了新的文献求助50
19秒前
怦怦应助yukime采纳,获得10
19秒前
20秒前
充电宝应助卡卡采纳,获得10
20秒前
Maeth发布了新的文献求助10
20秒前
十八完成签到,获得积分10
21秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
中国内窥镜润滑剂行业市场占有率及投资前景预测分析报告 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3311770
求助须知:如何正确求助?哪些是违规求助? 2944645
关于积分的说明 8520063
捐赠科研通 2620148
什么是DOI,文献DOI怎么找? 1432642
科研通“疑难数据库(出版商)”最低求助积分说明 664745
邀请新用户注册赠送积分活动 650019