Fully Automated Classification Method for Crops Based on Spatiotemporal Deep-Learning Fusion Technology

人工智能 深度学习 计算机科学 卷积神经网络 机器学习 模式识别(心理学) 人工神经网络 上下文图像分类 数据挖掘 图像(数学)
作者
Shuting Yang,Lingjia Gu,Xiaofeng Li,Fang Gao,Tao Jiang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-16 被引量:11
标识
DOI:10.1109/tgrs.2021.3113014
摘要

Accurate and timely crop mapping is essential for agricultural applications, and deep-learning methods have been applied on a range of remotely sensed data sources to classify crops. In this article, we develop a novel crop classification method based on spatiotemporal deep-learning fusion technology. However, for crop mapping, the selection and labeling of training samples is expensive and time consuming. Therefore, we propose a fully automated training-sample-selection method. First, we design the method according to image processing algorithms and the concept of a sliding window. Second, we develop the Geo-3D convolutional neural network (CNN) and Geo-Conv1D for crop classification using time-series Sentinel-2 imagery. Specifically, we integrate geographic information of crops into the structure of deep-learning networks. Finally, we apply an active learning strategy to integrate the classification advantages of Geo-3D CNN and Geo-Conv1D. Experiments conducted in Northeast China show that the proposed sampling method can reliably provide and label a large number of samples and achieve satisfactory results for different deep-learning networks. Based on the automatic selection and labeling of training samples, the crop classification method based on spatiotemporal deep-learning fusion technology can achieve the highest overall accuracy (OA) with approximately 92.50% as compared with Geo-Conv1D (91.89%) and Geo-3D CNN (91.27%) in the three study areas, indicating that the proposed method is effective and efficient in multi-temporal crop classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
Ampace小老弟完成签到 ,获得积分10
1秒前
Cherish完成签到,获得积分10
2秒前
jt完成签到,获得积分10
2秒前
牧尔芙完成签到 ,获得积分10
3秒前
wyw完成签到,获得积分10
4秒前
窦111完成签到,获得积分10
4秒前
小萌新完成签到,获得积分20
4秒前
psycho完成签到,获得积分10
4秒前
吴小埋发布了新的文献求助10
4秒前
刘文思完成签到,获得积分10
5秒前
走四方应助没树的叶子采纳,获得10
6秒前
搜集达人应助waypeter采纳,获得10
7秒前
天地一沙鸥完成签到 ,获得积分10
7秒前
猫猫头关注了科研通微信公众号
7秒前
Yurrrrt完成签到,获得积分10
8秒前
依依完成签到,获得积分10
9秒前
暴富完成签到,获得积分10
10秒前
失眠傲白完成签到,获得积分0
11秒前
12秒前
Yy杨优秀完成签到 ,获得积分10
12秒前
粗心小熊猫完成签到,获得积分10
12秒前
专一的凝荷完成签到,获得积分10
13秒前
脑残骑士老张完成签到,获得积分10
13秒前
Shirely完成签到,获得积分10
14秒前
若水完成签到,获得积分10
14秒前
Hoper完成签到,获得积分10
14秒前
perovskite完成签到,获得积分10
14秒前
Yanping完成签到,获得积分10
15秒前
15秒前
彭宝淦完成签到,获得积分10
16秒前
LYB1a吕完成签到,获得积分10
16秒前
16秒前
沐曦完成签到,获得积分10
17秒前
17秒前
xiaofeng5838完成签到,获得积分10
18秒前
19秒前
Niko完成签到,获得积分10
19秒前
Zetlynn完成签到,获得积分10
20秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950088
求助须知:如何正确求助?哪些是违规求助? 3495487
关于积分的说明 11077296
捐赠科研通 3226021
什么是DOI,文献DOI怎么找? 1783386
邀请新用户注册赠送积分活动 867687
科研通“疑难数据库(出版商)”最低求助积分说明 800855