Fully Automated Classification Method for Crops Based on Spatiotemporal Deep-Learning Fusion Technology

人工智能 深度学习 计算机科学 卷积神经网络 机器学习 模式识别(心理学) 人工神经网络 上下文图像分类 数据挖掘 图像(数学)
作者
Shuting Yang,Lingjia Gu,Xiaofeng Li,Fang Gao,Tao Jiang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-16 被引量:11
标识
DOI:10.1109/tgrs.2021.3113014
摘要

Accurate and timely crop mapping is essential for agricultural applications, and deep-learning methods have been applied on a range of remotely sensed data sources to classify crops. In this article, we develop a novel crop classification method based on spatiotemporal deep-learning fusion technology. However, for crop mapping, the selection and labeling of training samples is expensive and time consuming. Therefore, we propose a fully automated training-sample-selection method. First, we design the method according to image processing algorithms and the concept of a sliding window. Second, we develop the Geo-3D convolutional neural network (CNN) and Geo-Conv1D for crop classification using time-series Sentinel-2 imagery. Specifically, we integrate geographic information of crops into the structure of deep-learning networks. Finally, we apply an active learning strategy to integrate the classification advantages of Geo-3D CNN and Geo-Conv1D. Experiments conducted in Northeast China show that the proposed sampling method can reliably provide and label a large number of samples and achieve satisfactory results for different deep-learning networks. Based on the automatic selection and labeling of training samples, the crop classification method based on spatiotemporal deep-learning fusion technology can achieve the highest overall accuracy (OA) with approximately 92.50% as compared with Geo-Conv1D (91.89%) and Geo-3D CNN (91.27%) in the three study areas, indicating that the proposed method is effective and efficient in multi-temporal crop classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
Orange应助Dkakxncnsksl采纳,获得10
2秒前
3秒前
4秒前
拾野发布了新的文献求助10
5秒前
乐意完成签到,获得积分20
5秒前
LI发布了新的文献求助10
6秒前
哎嘤斯坦发布了新的文献求助10
7秒前
从云先生完成签到,获得积分10
8秒前
ephore应助reborn采纳,获得30
8秒前
9秒前
9秒前
10秒前
yujiu应助9999采纳,获得10
14秒前
单于明辉发布了新的文献求助30
14秒前
wyr完成签到,获得积分10
15秒前
18秒前
高贵的水香完成签到,获得积分10
19秒前
LQX2141发布了新的文献求助10
21秒前
23秒前
250发布了新的文献求助10
23秒前
sunnnn发布了新的文献求助10
28秒前
28秒前
28秒前
31秒前
材1完成签到 ,获得积分10
32秒前
Jasper应助大树采纳,获得10
35秒前
薰硝壤应助小徐医生采纳,获得30
35秒前
37秒前
CWNU_HAN应助彪行天下采纳,获得30
39秒前
科研通AI2S应助千九采纳,获得10
40秒前
s33发布了新的文献求助10
41秒前
42秒前
友好擎发布了新的文献求助30
42秒前
桃桃淘发布了新的文献求助10
43秒前
250完成签到,获得积分10
44秒前
LYDZ1发布了新的文献求助10
45秒前
45秒前
finger完成签到,获得积分10
47秒前
高分求助中
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Gerard de Lairesse : an artist between stage and studio 500
Digging and Dealing in Eighteenth-Century Rome 500
Queer Politics in Times of New Authoritarianisms: Popular Culture in South Asia 500
Livre et militantisme : La Cité éditeur 1958-1967 500
Retention of title in secured transactions law from a creditor's perspective: A comparative analysis of selected (non-)functional approaches 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3061946
求助须知:如何正确求助?哪些是违规求助? 2716957
关于积分的说明 7452269
捐赠科研通 2362976
什么是DOI,文献DOI怎么找? 1252494
科研通“疑难数据库(出版商)”最低求助积分说明 608042
版权声明 596551