IMAL‐Net: Interpretable multi‐task attention learning network for invasive lung adenocarcinoma screening in CT images

可解释性 计算机科学 卷积神经网络 人工智能 分割 模式识别(心理学) 深度学习 可视化 判别式 机器学习 特征(语言学) 特征选择 语言学 哲学
作者
Jun Wang,Yuan Cheng,Can Han,Yaofeng Wen,Hongbing Lu,Chen Liu,Yunlang She,Jiajun Deng,Biao Li,Dahong Qian,Chang Chen
出处
期刊:Medical Physics [Wiley]
卷期号:48 (12): 7913-7929 被引量:7
标识
DOI:10.1002/mp.15293
摘要

Feature maps created from deep convolutional neural networks (DCNNs) have been widely used for visual explanation of DCNN-based classification tasks. However, many clinical applications such as benign-malignant classification of lung nodules normally require quantitative and objective interpretability, rather than just visualization. In this paper, we propose a novel interpretable multi-task attention learning network named IMAL-Net for early invasive adenocarcinoma screening in chest computed tomography images, which takes advantage of segmentation prior to assist interpretable classification.Two sub-ResNets are firstly integrated together via a prior-attention mechanism for simultaneous nodule segmentation and invasiveness classification. Then, numerous radiomic features from the segmentation results are concatenated with high-level semantic features from the classification subnetwork by FC layers to achieve superior performance. Meanwhile, an end-to-end feature selection mechanism (named FSM) is designed to quantify crucial radiomic features greatly affecting the prediction of each sample, and thus it can provide clinically applicable interpretability to the prediction result.Nodule samples from a total of 1626 patients were collected from two grade-A hospitals for large-scale verification. Five-fold cross validation demonstrated that the proposed IMAL-Net can achieve an AUC score of 93.8% ± 1.1% and a recall score of 93.8% ± 2.8% for identification of invasive lung adenocarcinoma.It can be concluded that fusing semantic features and radiomic features can achieve obvious improvements in the invasiveness classification task. Moreover, by learning more fine-grained semantic features and highlighting the most important radiomics features, the proposed attention and FSM mechanisms not only can further improve the performance but also can be used for both visual explanations and objective analysis of the classification results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
秋风之墩发布了新的文献求助10
2秒前
3秒前
ll发布了新的文献求助10
3秒前
3秒前
华仔应助唐ZY123采纳,获得50
3秒前
大气早晨发布了新的文献求助10
4秒前
4秒前
santuchuan发布了新的文献求助30
4秒前
5秒前
6秒前
成就觅翠发布了新的文献求助10
6秒前
7秒前
君子兰发布了新的文献求助10
8秒前
8秒前
我要留学应助Ying采纳,获得10
8秒前
8秒前
zcc发布了新的文献求助10
9秒前
不拿拿发布了新的文献求助10
9秒前
9秒前
9秒前
量子星尘发布了新的文献求助50
10秒前
领导范儿应助耍酷的碧琴采纳,获得10
11秒前
木木木木发布了新的文献求助10
11秒前
小蘑菇应助东风压倒西风采纳,获得10
13秒前
FashionBoy应助怕孤单的凌瑶采纳,获得10
14秒前
成就觅翠发布了新的文献求助10
14秒前
14秒前
谨慎的铸海完成签到,获得积分10
14秒前
15秒前
15秒前
16秒前
孔圣枕中丹完成签到,获得积分20
16秒前
Xangel完成签到,获得积分20
17秒前
18秒前
阿波罗完成签到,获得积分10
18秒前
风趣的三毒完成签到,获得积分10
18秒前
霸气的煜祺完成签到,获得积分10
19秒前
19秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4608665
求助须知:如何正确求助?哪些是违规求助? 4015152
关于积分的说明 12432228
捐赠科研通 3696386
什么是DOI,文献DOI怎么找? 2037989
邀请新用户注册赠送积分活动 1071068
科研通“疑难数据库(出版商)”最低求助积分说明 954975