IMAL‐Net: Interpretable multi‐task attention learning network for invasive lung adenocarcinoma screening in CT images

可解释性 计算机科学 卷积神经网络 人工智能 分割 模式识别(心理学) 深度学习 可视化 判别式 机器学习 特征(语言学) 特征选择 语言学 哲学
作者
Jun Wang,Yuan Cheng,Can Han,Yaofeng Wen,Hongbing Lu,Chen Liu,Yunlang She,Jiajun Deng,Biao Li,Dahong Qian,Chang Chen
出处
期刊:Medical Physics [Wiley]
卷期号:48 (12): 7913-7929 被引量:7
标识
DOI:10.1002/mp.15293
摘要

Feature maps created from deep convolutional neural networks (DCNNs) have been widely used for visual explanation of DCNN-based classification tasks. However, many clinical applications such as benign-malignant classification of lung nodules normally require quantitative and objective interpretability, rather than just visualization. In this paper, we propose a novel interpretable multi-task attention learning network named IMAL-Net for early invasive adenocarcinoma screening in chest computed tomography images, which takes advantage of segmentation prior to assist interpretable classification.Two sub-ResNets are firstly integrated together via a prior-attention mechanism for simultaneous nodule segmentation and invasiveness classification. Then, numerous radiomic features from the segmentation results are concatenated with high-level semantic features from the classification subnetwork by FC layers to achieve superior performance. Meanwhile, an end-to-end feature selection mechanism (named FSM) is designed to quantify crucial radiomic features greatly affecting the prediction of each sample, and thus it can provide clinically applicable interpretability to the prediction result.Nodule samples from a total of 1626 patients were collected from two grade-A hospitals for large-scale verification. Five-fold cross validation demonstrated that the proposed IMAL-Net can achieve an AUC score of 93.8% ± 1.1% and a recall score of 93.8% ± 2.8% for identification of invasive lung adenocarcinoma.It can be concluded that fusing semantic features and radiomic features can achieve obvious improvements in the invasiveness classification task. Moreover, by learning more fine-grained semantic features and highlighting the most important radiomics features, the proposed attention and FSM mechanisms not only can further improve the performance but also can be used for both visual explanations and objective analysis of the classification results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
baolongzhan完成签到,获得积分10
2秒前
轮椅发布了新的文献求助10
2秒前
大渣饼完成签到 ,获得积分10
2秒前
科研小狗完成签到,获得积分10
2秒前
科研通AI2S应助奋斗平卉采纳,获得10
2秒前
吴晓燕完成签到,获得积分10
3秒前
脑洞疼应助Ricky采纳,获得10
4秒前
4秒前
4秒前
4秒前
小蘑菇应助禾斗石开通采纳,获得10
4秒前
爆米花应助baolongzhan采纳,获得10
5秒前
空白格完成签到 ,获得积分10
5秒前
千里发布了新的文献求助10
5秒前
5秒前
5秒前
6秒前
浮游应助xiaofu采纳,获得10
6秒前
Lucas应助中午采纳,获得10
6秒前
SD完成签到 ,获得积分10
6秒前
pangpanghu完成签到,获得积分10
6秒前
李科生完成签到,获得积分20
6秒前
jrz完成签到,获得积分10
7秒前
7秒前
4477完成签到,获得积分10
7秒前
韩小寒qqq完成签到,获得积分10
7秒前
我又可以了完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
AN应助sinlar采纳,获得100
9秒前
无极微光应助cong采纳,获得20
9秒前
乌苏苏完成签到,获得积分20
9秒前
李科生发布了新的文献求助10
9秒前
9秒前
9秒前
Lily完成签到,获得积分10
9秒前
打打应助开心的幼珊采纳,获得10
9秒前
小二郎应助棋子采纳,获得10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629869
求助须知:如何正确求助?哪些是违规求助? 4720921
关于积分的说明 14971132
捐赠科研通 4787826
什么是DOI,文献DOI怎么找? 2556570
邀请新用户注册赠送积分活动 1517709
关于科研通互助平台的介绍 1478285