IMAL‐Net: Interpretable multi‐task attention learning network for invasive lung adenocarcinoma screening in CT images

可解释性 计算机科学 卷积神经网络 人工智能 分割 模式识别(心理学) 深度学习 可视化 判别式 机器学习 特征(语言学) 特征选择 语言学 哲学
作者
Jun Wang,Yuan Cheng,Can Han,Yaofeng Wen,Hongbing Lu,Chen Liu,Yunlang She,Jiajun Deng,Biao Li,Dahong Qian,Chang Chen
出处
期刊:Medical Physics [Wiley]
卷期号:48 (12): 7913-7929 被引量:7
标识
DOI:10.1002/mp.15293
摘要

Feature maps created from deep convolutional neural networks (DCNNs) have been widely used for visual explanation of DCNN-based classification tasks. However, many clinical applications such as benign-malignant classification of lung nodules normally require quantitative and objective interpretability, rather than just visualization. In this paper, we propose a novel interpretable multi-task attention learning network named IMAL-Net for early invasive adenocarcinoma screening in chest computed tomography images, which takes advantage of segmentation prior to assist interpretable classification.Two sub-ResNets are firstly integrated together via a prior-attention mechanism for simultaneous nodule segmentation and invasiveness classification. Then, numerous radiomic features from the segmentation results are concatenated with high-level semantic features from the classification subnetwork by FC layers to achieve superior performance. Meanwhile, an end-to-end feature selection mechanism (named FSM) is designed to quantify crucial radiomic features greatly affecting the prediction of each sample, and thus it can provide clinically applicable interpretability to the prediction result.Nodule samples from a total of 1626 patients were collected from two grade-A hospitals for large-scale verification. Five-fold cross validation demonstrated that the proposed IMAL-Net can achieve an AUC score of 93.8% ± 1.1% and a recall score of 93.8% ± 2.8% for identification of invasive lung adenocarcinoma.It can be concluded that fusing semantic features and radiomic features can achieve obvious improvements in the invasiveness classification task. Moreover, by learning more fine-grained semantic features and highlighting the most important radiomics features, the proposed attention and FSM mechanisms not only can further improve the performance but also can be used for both visual explanations and objective analysis of the classification results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yi111发布了新的文献求助10
刚刚
1秒前
科研快乐小狗完成签到 ,获得积分10
1秒前
yangyang2021发布了新的文献求助10
1秒前
丰知然应助你眼带笑采纳,获得10
2秒前
2秒前
科研通AI6应助hainuo401采纳,获得10
2秒前
2秒前
林中雀发布了新的文献求助10
2秒前
2秒前
陈琛发布了新的文献求助10
3秒前
QI发布了新的文献求助10
3秒前
摩天轮完成签到 ,获得积分10
3秒前
3秒前
wmmmmm完成签到 ,获得积分10
3秒前
水木完成签到,获得积分10
3秒前
嘤嘤嘤发布了新的文献求助200
3秒前
科研通AI6应助wzt采纳,获得10
4秒前
科研通AI6应助wzt采纳,获得10
4秒前
科研通AI6应助wzt采纳,获得10
4秒前
不是一个名字完成签到,获得积分10
4秒前
兴奋仙人掌完成签到 ,获得积分10
4秒前
开朗的大叔完成签到,获得积分10
5秒前
5秒前
天天快乐应助大胆诗云采纳,获得10
5秒前
yao么关注了科研通微信公众号
5秒前
Zz发布了新的文献求助10
6秒前
月儿发布了新的文献求助10
6秒前
虚心的阿松完成签到,获得积分10
6秒前
Wuyt应助xzn1123采纳,获得10
6秒前
哈哈哈哈完成签到,获得积分20
7秒前
mawenxing完成签到,获得积分10
7秒前
SciGPT应助彭意采纳,获得10
7秒前
7秒前
欢快的芹菜完成签到,获得积分10
7秒前
隐形曼青应助葡萄小伊ovo采纳,获得10
7秒前
郝天气完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
9秒前
琦琦完成签到 ,获得积分10
9秒前
香氛完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Science of Synthesis: Houben–Weyl Methods of Molecular Transformations 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5524349
求助须知:如何正确求助?哪些是违规求助? 4614939
关于积分的说明 14545569
捐赠科研通 4552859
什么是DOI,文献DOI怎么找? 2495047
邀请新用户注册赠送积分活动 1475675
关于科研通互助平台的介绍 1447419