IMAL‐Net: Interpretable multi‐task attention learning network for invasive lung adenocarcinoma screening in CT images

可解释性 计算机科学 卷积神经网络 人工智能 分割 模式识别(心理学) 深度学习 可视化 判别式 机器学习 特征(语言学) 特征选择 语言学 哲学
作者
Jun Wang,Yuan Cheng,Can Han,Yaofeng Wen,Hongbing Lu,Chen Liu,Yunlang She,Jiajun Deng,Biao Li,Dahong Qian,Chang Chen
出处
期刊:Medical Physics [Wiley]
卷期号:48 (12): 7913-7929 被引量:7
标识
DOI:10.1002/mp.15293
摘要

Feature maps created from deep convolutional neural networks (DCNNs) have been widely used for visual explanation of DCNN-based classification tasks. However, many clinical applications such as benign-malignant classification of lung nodules normally require quantitative and objective interpretability, rather than just visualization. In this paper, we propose a novel interpretable multi-task attention learning network named IMAL-Net for early invasive adenocarcinoma screening in chest computed tomography images, which takes advantage of segmentation prior to assist interpretable classification.Two sub-ResNets are firstly integrated together via a prior-attention mechanism for simultaneous nodule segmentation and invasiveness classification. Then, numerous radiomic features from the segmentation results are concatenated with high-level semantic features from the classification subnetwork by FC layers to achieve superior performance. Meanwhile, an end-to-end feature selection mechanism (named FSM) is designed to quantify crucial radiomic features greatly affecting the prediction of each sample, and thus it can provide clinically applicable interpretability to the prediction result.Nodule samples from a total of 1626 patients were collected from two grade-A hospitals for large-scale verification. Five-fold cross validation demonstrated that the proposed IMAL-Net can achieve an AUC score of 93.8% ± 1.1% and a recall score of 93.8% ± 2.8% for identification of invasive lung adenocarcinoma.It can be concluded that fusing semantic features and radiomic features can achieve obvious improvements in the invasiveness classification task. Moreover, by learning more fine-grained semantic features and highlighting the most important radiomics features, the proposed attention and FSM mechanisms not only can further improve the performance but also can be used for both visual explanations and objective analysis of the classification results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
xiongyh10发布了新的文献求助10
1秒前
zk关闭了zk文献求助
2秒前
2秒前
BJL发布了新的文献求助10
2秒前
2秒前
LF完成签到 ,获得积分10
2秒前
coco发布了新的文献求助10
2秒前
3秒前
3秒前
传奇3应助科研工作者采纳,获得10
3秒前
可爱的函函应助Yixin_Niu采纳,获得10
4秒前
4秒前
4秒前
yellowflash发布了新的文献求助10
4秒前
笑对人生关注了科研通微信公众号
4秒前
Akim应助奔跑的棉花采纳,获得10
5秒前
苗条的语海完成签到,获得积分10
5秒前
5秒前
搜集达人应助欣慰的妙菱采纳,获得30
5秒前
科研通AI2S应助Eina采纳,获得10
5秒前
砡君应助xiaoyan采纳,获得10
5秒前
yld发布了新的文献求助10
5秒前
搜集达人应助专注的问筠采纳,获得10
5秒前
5秒前
maytang发布了新的文献求助30
5秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
ruqinmq完成签到,获得积分10
6秒前
锕系第八元素完成签到,获得积分10
6秒前
无花果应助飞槐采纳,获得10
6秒前
WanRan发布了新的文献求助10
6秒前
Bonobonoya发布了新的文献求助10
7秒前
Jasper应助tangyuan采纳,获得10
7秒前
bxsg完成签到 ,获得积分20
7秒前
7秒前
Lucas应助叶子采纳,获得10
7秒前
guagua发布了新的文献求助10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719256
求助须知:如何正确求助?哪些是违规求助? 5255673
关于积分的说明 15288302
捐赠科研通 4869143
什么是DOI,文献DOI怎么找? 2614653
邀请新用户注册赠送积分活动 1564667
关于科研通互助平台的介绍 1521894