Multi-objective particle swarm optimization based rendezvous point selection for the energy and delay efficient networked wireless sensor data acquisition

会合 计算机科学 粒子群优化 数学优化 蚁群优化算法 能源消耗 无线传感器网络 最优化问题 实时计算
作者
Anjula Mehto,Shashikala Tapaswi,Kiran Kumar Pattanaik
出处
期刊:Journal of Network and Computer Applications [Elsevier BV]
卷期号:: 103234-103234
标识
DOI:10.1016/j.jnca.2021.103234
摘要

Traditionally, the non-rendezvous points transmit data towards Rendezvous Points (RPs), and Mobile Sink (MS) visits RPs to collect data. The existing body of research mitigates the problem of data acquisition latency, load on RPs, and energy consumption by regulating the number of RPs. Fewer RPs benefit the data acquisition latency, whereas increased RPs benefit the multi-hop forwarding and load on RPs. This paper takes up these issues and models as multi-objective optimization problem attempting to minimize data collection latency, data load among RPs, and the number of RPs. Particle Swarm Optimization (PSO) is the widely used meta-heuristic method to solve a multi-objective optimization problem with better convergence and minimum overhead. This paper introduces a Multi-Objective Particle Swarm Optimization based RPs Selection (MOPSO-RPS) method for energy and delay efficient data collection. MOPSO-RPS applies a new encoding scheme to generate variable dimension particles that represent each possible set of RPs. Additionally, a new inertia weight tuner is also referred to enhance the convergence speed of multi-objective PSO towards the optimal solution. However, it might happen that after updating the location and velocity in each iteration, the particles become invalid due to the violation of the search space boundary. Thus it adopts a valid particle generator to create valid particles. Moreover, an improved ant colony optimization is also applied to construct the trajectory of MS with fast convergence speed towards the optimal solution. Simulation results depict that the proposed MOPSO-RPS result in 18.61%, 21.11%, and 10.71% average improvement in energy consumption, data load among RPs, and data acquisition latency, respectively, for different number of sensor nodes when compared with the state-of-the-art methods. • MOPSO-based RPs selection to minimize data acquisition latency, data load of RPs and number of RPs. • An efficient encoding scheme to generate variable dimension particles that represent a set of RPs. • An adaptive tuning of inertia weight to enhance the convergence speed towards the optimal solution. • Improved ACO-based delay efficient trajectory formation for data acquisition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
kw98完成签到 ,获得积分10
1秒前
2秒前
gjl完成签到,获得积分10
3秒前
3秒前
阔达碧空发布了新的文献求助10
3秒前
6秒前
samara发布了新的文献求助10
6秒前
ding应助小八统治世界采纳,获得10
6秒前
9秒前
9秒前
淡然靖柔发布了新的文献求助10
9秒前
Bear完成签到,获得积分10
10秒前
11秒前
12秒前
13秒前
chl发布了新的文献求助10
13秒前
走着完成签到,获得积分10
15秒前
毛毛酱发布了新的文献求助30
16秒前
17秒前
17秒前
18秒前
阴森女公爵关注了科研通微信公众号
18秒前
尼克的朱迪完成签到,获得积分10
19秒前
19秒前
19秒前
20秒前
ttg990720发布了新的文献求助10
20秒前
21秒前
21秒前
有魅力强炫完成签到,获得积分10
21秒前
周涛完成签到,获得积分10
21秒前
zhouti497541171完成签到,获得积分10
23秒前
光翟君发布了新的文献求助10
23秒前
斯文明杰发布了新的文献求助10
24秒前
25秒前
25秒前
爆米花应助泠泠泠萘采纳,获得10
25秒前
郭靖发布了新的文献求助10
25秒前
万能图书馆应助老jia采纳,获得10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4633192
求助须知:如何正确求助?哪些是违规求助? 4029241
关于积分的说明 12466657
捐赠科研通 3715470
什么是DOI,文献DOI怎么找? 2050148
邀请新用户注册赠送积分活动 1081735
科研通“疑难数据库(出版商)”最低求助积分说明 964033