Industrial Quality Prediction System through Data Mining Algorithm

质量(理念) 可靠性工程 计算机科学 产品(数学) 生产(经济) 架空(工程) 过程(计算) 制造业 领域(数学) 工业工程 数据挖掘 制造工程 工程类 操作系统 哲学 宏观经济学 经济 认识论 法学 数学 纯数学 政治学 几何学
作者
P. Karthigaikumar
出处
期刊:Journal of Electronics and Informatics [Inventive Research Organization]
卷期号:3 (2): 126-137 被引量:27
标识
DOI:10.36548/jei.2021.2.005
摘要

Based on an assessment of production capabilities, manufacturing sectors' core competency is increased. The importance of product quality in this aspect cannot be overstated. Several academics have introduced Deming's 14 principles, Shewhart cycle, total quality management, and other approaches to decrease the external failure costs and enhance product yield rates. Analysis of industrial data and process monitoring is becoming increasingly important as a part of the Industry 4.0 paradigm. In order to reduce the internal failure cost and inspection overhead, quality control (QC) schemes are utilized by industries. The final product quality has an interactive and cumulative effect of various parameters like operators and equipment in multistage manufacturing processes (MMP). In other cases, the final product is inspected in a single workstation with QC. It's challenging to do a cause analysis in MMP whenever a failure occurs. Several industries are looking for the optimal quality prediction model in order to achieve flawless production. The majority of current approaches solely handles single-stage manufacturing and is inadequate in dealing with MMP quality concerns. To overcome this issue, this paper proposes an industrial quality prediction system with a combination of multiple Program Component Analysis (PCA) and Decision Stump (DS) algorithm for MMP quality prediction. A SECOM (SEmiCOnductor Manufacturing) dataset is used for verification and validation of the proposed model. Based on the findings, it is clear that this model is capable of performing accurate classification and prediction in the field of industrial quality.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jennifer发布了新的文献求助10
2秒前
tangyuan完成签到,获得积分10
3秒前
L長様发布了新的文献求助10
3秒前
3秒前
5秒前
卡西莫多发布了新的文献求助10
5秒前
Jasper应助小梦采纳,获得10
7秒前
7秒前
Ying发布了新的文献求助10
7秒前
7秒前
真实的青曼关注了科研通微信公众号
8秒前
九千七完成签到,获得积分10
8秒前
阿凡提发布了新的文献求助10
8秒前
斯文败类应助唐瑞玖采纳,获得10
8秒前
8秒前
平常康发布了新的文献求助10
9秒前
HhhhL完成签到,获得积分10
9秒前
9秒前
CipherSage应助HAP采纳,获得10
10秒前
李健应助susui采纳,获得10
11秒前
Zoom完成签到,获得积分10
11秒前
lu完成签到,获得积分20
11秒前
12秒前
12秒前
Orange应助xy采纳,获得10
12秒前
英姑应助寒江雪采纳,获得10
12秒前
秋丶凡尘发布了新的文献求助10
13秒前
Akim应助氼乚采纳,获得10
13秒前
lu发布了新的文献求助10
13秒前
汉堡包应助aileen9190采纳,获得10
14秒前
14秒前
文艺纲发布了新的文献求助10
15秒前
16秒前
Nikko发布了新的文献求助10
17秒前
17秒前
Tiger-Cheng发布了新的文献求助30
17秒前
充电宝应助阔达乘云采纳,获得10
18秒前
唐瑞玖完成签到,获得积分10
18秒前
18秒前
wanghe完成签到,获得积分10
18秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3305803
求助须知:如何正确求助?哪些是违规求助? 2939514
关于积分的说明 8493767
捐赠科研通 2613930
什么是DOI,文献DOI怎么找? 1427800
科研通“疑难数据库(出版商)”最低求助积分说明 663185
邀请新用户注册赠送积分活动 647987