Group-Based Atrous Convolution Stereo Matching Network

计算机科学 卷积(计算机科学) 群(周期表) 匹配(统计) 人工智能 计算机视觉 数学 统计 物理 人工神经网络 量子力学
作者
Qijie Zou,Jing Yu,Hui Fang,Jing Qin,Jie Zhang,Shengkai Liu
出处
期刊:Wireless Communications and Mobile Computing [Hindawi Limited]
卷期号:2021 (1) 被引量:2
标识
DOI:10.1155/2021/7386280
摘要

Stereo matching is the key technology in stereo vision. Given a pair of rectified images, stereo matching determines correspondences between the pair images and estimate depth by obtaining disparity between corresponding pixels. The current work has shown that depth estimation from a stereo pair of images can be formulated as a supervised learning task with an end‐to‐end frame based on convolutional neural networks (CNNs). However, 3D CNN puts a great burden on memory storage and computation, which further leads to the significantly increased computation time. To alleviate this issue, atrous convolution was proposed to reduce the number of convolutional operations via a relatively sparse receptive field. However, this sparse receptive field makes it difficult to find reliable corresponding points in fuzzy areas, e.g., occluded areas and untextured areas, owing to the loss of rich contextual information. To address this problem, we propose the Group‐based Atrous Convolution Spatial Pyramid Pooling (GASPP) to robustly segment objects at multiple scales with affordable computing resources. The main feature of the GASPP module is to set convolutional layers with continuous dilation rate in each group, so that it can reduce the impact of holes introduced by atrous convolution on network performance. Moreover, we introduce a tailored cascade cost volume in a pyramid form to reduce memory, so as to meet real‐time performance. The group‐based atrous convolution stereo matching network is evaluated on the street scene benchmark KITTI 2015 and Scene Flow and achieves state‐of‐the‐art performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赵旭东发布了新的文献求助10
1秒前
饼大王完成签到 ,获得积分10
2秒前
所所应助甜甜的亦寒采纳,获得10
5秒前
5秒前
6秒前
hcm发布了新的文献求助10
6秒前
搜集达人应助wandaiji采纳,获得10
7秒前
学术小菜鸡完成签到,获得积分10
7秒前
dddhp完成签到,获得积分20
9秒前
研友_VZG7GZ应助1111222采纳,获得10
10秒前
asdfqwer应助赵旭东采纳,获得10
10秒前
10秒前
无限山晴发布了新的文献求助10
10秒前
mimimi发布了新的文献求助10
12秒前
12秒前
闵山河发布了新的文献求助10
12秒前
无花果应助活泼舞蹈采纳,获得10
13秒前
林旭发布了新的文献求助10
13秒前
草历夏木发布了新的文献求助10
13秒前
Ava应助范德萨范德萨采纳,获得10
14秒前
14秒前
14秒前
英俊的铭应助淡淡乐巧采纳,获得10
14秒前
酷波er应助黄芪采纳,获得10
15秒前
16秒前
16秒前
邱海华完成签到,获得积分10
16秒前
自由一一应助fzzzzlucy采纳,获得20
17秒前
自由一一应助fzzzzlucy采纳,获得20
17秒前
勤劳怜寒完成签到,获得积分10
17秒前
17秒前
18秒前
决明发布了新的文献求助10
18秒前
18秒前
18秒前
19秒前
坚强冰蝶完成签到,获得积分10
19秒前
害羞猫咪完成签到,获得积分10
20秒前
20秒前
21秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3304724
求助须知:如何正确求助?哪些是违规求助? 2938716
关于积分的说明 8489688
捐赠科研通 2613208
什么是DOI,文献DOI怎么找? 1427182
科研通“疑难数据库(出版商)”最低求助积分说明 662907
邀请新用户注册赠送积分活动 647547