Non-Model-Based Monocular Pose Estimation Network for Uncooperative Spacecraft Using Convolutional Neural Network

航天器 姿势 人工智能 计算机科学 卷积神经网络 计算机视觉 人工神经网络 单眼 职位(财务) 工程类 航空航天工程 财务 经济
作者
Haoran Huang,Gaopeng Zhao,Dongqing Gu,Yuming Bo
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:21 (21): 24579-24590 被引量:12
标识
DOI:10.1109/jsen.2021.3115844
摘要

The pose estimation of uncooperative target spacecraft is a key technique in on-orbit servicing missions, among which the method based on monocular camera with low mass and power requirements has attracted widespread attention. However, monocular pose estimation methods mostly rely on the known 3D model of the target spacecraft, and non-model-based methods have low accuracy and even output the results when there is no target spacecraft in the image. In this paper, a non-model-based monocular pose estimation network for uncooperative spacecraft based on the convolutional neural network is proposed. This network uses three sub-networks to solve the problems of pose estimation and object detection. The first sub-network, called the attitude prediction sub-network, is used to predict the relative attitude of the target spacecraft by soft classification and error quaternion regression. The second sub-network, called the position regression sub-network, is used to predict the relative position of the target spacecraft by regression. The third sub-network called the object detection sub-network is used to detect the target spacecraft to determine whether the predicted pose needs to be output. The experimental results of the pose estimation of two public spacecraft demonstrate that the proposed method can effectively detect the target spacecraft and achieve better pose estimation accuracy than previous non-model-based methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助闾丘剑封采纳,获得10
刚刚
yx完成签到,获得积分10
1秒前
1秒前
ding应助Kate采纳,获得10
1秒前
bin发布了新的文献求助10
2秒前
隐形曼青应助碧蓝靳采纳,获得10
2秒前
BaekHyun完成签到 ,获得积分10
2秒前
mengdong发布了新的文献求助10
2秒前
清脆水之完成签到 ,获得积分10
3秒前
Simonzenith完成签到,获得积分10
3秒前
qwepirt发布了新的文献求助10
4秒前
贪玩丹秋发布了新的文献求助10
4秒前
山野下应助enochc采纳,获得10
4秒前
欣忆完成签到 ,获得积分10
4秒前
开放思远完成签到,获得积分10
4秒前
传奇3应助清脆的乐荷采纳,获得10
4秒前
六个大洋完成签到 ,获得积分10
5秒前
Lucas应助苏苏苏采纳,获得10
5秒前
科目三应助ljw采纳,获得10
5秒前
6秒前
wang发布了新的文献求助10
7秒前
关心发布了新的文献求助30
7秒前
7秒前
yukang完成签到,获得积分10
8秒前
沙滩的收印完成签到,获得积分10
8秒前
阿枫完成签到,获得积分10
8秒前
耍酷谷云发布了新的文献求助10
8秒前
8秒前
8秒前
词多多完成签到,获得积分10
9秒前
开开心心的开心完成签到,获得积分10
9秒前
10秒前
dm驳回了酷波er应助
10秒前
量子星尘发布了新的文献求助10
10秒前
英姑应助沐允贤采纳,获得10
10秒前
ASDS完成签到,获得积分10
10秒前
11秒前
impala完成签到,获得积分10
11秒前
ddjl完成签到,获得积分20
11秒前
大胆的忆雪完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5665352
求助须知:如何正确求助?哪些是违规求助? 4876309
关于积分的说明 15113352
捐赠科研通 4824419
什么是DOI,文献DOI怎么找? 2582766
邀请新用户注册赠送积分活动 1536717
关于科研通互助平台的介绍 1495328