Non-Model-Based Monocular Pose Estimation Network for Uncooperative Spacecraft Using Convolutional Neural Network

航天器 姿势 人工智能 计算机科学 卷积神经网络 计算机视觉 人工神经网络 单眼 职位(财务) 工程类 航空航天工程 财务 经济
作者
Haoran Huang,Gaopeng Zhao,Dongqing Gu,Yuming Bo
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:21 (21): 24579-24590 被引量:12
标识
DOI:10.1109/jsen.2021.3115844
摘要

The pose estimation of uncooperative target spacecraft is a key technique in on-orbit servicing missions, among which the method based on monocular camera with low mass and power requirements has attracted widespread attention. However, monocular pose estimation methods mostly rely on the known 3D model of the target spacecraft, and non-model-based methods have low accuracy and even output the results when there is no target spacecraft in the image. In this paper, a non-model-based monocular pose estimation network for uncooperative spacecraft based on the convolutional neural network is proposed. This network uses three sub-networks to solve the problems of pose estimation and object detection. The first sub-network, called the attitude prediction sub-network, is used to predict the relative attitude of the target spacecraft by soft classification and error quaternion regression. The second sub-network, called the position regression sub-network, is used to predict the relative position of the target spacecraft by regression. The third sub-network called the object detection sub-network is used to detect the target spacecraft to determine whether the predicted pose needs to be output. The experimental results of the pose estimation of two public spacecraft demonstrate that the proposed method can effectively detect the target spacecraft and achieve better pose estimation accuracy than previous non-model-based methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
weiwei发布了新的文献求助30
刚刚
机灵筮完成签到,获得积分10
刚刚
东方元语应助科研通管家采纳,获得20
1秒前
嘞是举仔应助科研通管家采纳,获得10
1秒前
Owen应助科研通管家采纳,获得10
1秒前
大模型应助科研通管家采纳,获得10
1秒前
慕青应助科研通管家采纳,获得30
1秒前
赘婿应助蓝天采纳,获得10
1秒前
完美世界应助科研通管家采纳,获得10
1秒前
科研通AI6应助蓝天采纳,获得10
1秒前
研友_VZG7GZ应助鲁欢采纳,获得10
1秒前
吕凯迪应助科研通管家采纳,获得10
1秒前
科研通AI6应助蓝天采纳,获得10
1秒前
tiptip应助蓝天采纳,获得10
1秒前
科研通AI6应助蓝天采纳,获得10
2秒前
bkagyin应助科研通管家采纳,获得20
2秒前
Wind应助蓝天采纳,获得10
2秒前
完美世界应助蓝天采纳,获得10
2秒前
领导范儿应助科研通管家采纳,获得10
2秒前
小马甲应助蓝天采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
Wind应助蓝天采纳,获得10
2秒前
spc68应助科研通管家采纳,获得10
2秒前
科研通AI6应助蓝天采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
2秒前
Owen应助科研通管家采纳,获得10
2秒前
情怀应助科研通管家采纳,获得10
2秒前
在水一方应助科研通管家采纳,获得10
2秒前
隐形曼青应助科研通管家采纳,获得10
2秒前
搜集达人应助科研通管家采纳,获得10
2秒前
在水一方应助科研通管家采纳,获得30
2秒前
东方元语应助科研通管家采纳,获得20
2秒前
传奇3应助科研通管家采纳,获得10
2秒前
缓慢寻云完成签到 ,获得积分10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
完美世界应助yangliwei采纳,获得10
3秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5684488
求助须知:如何正确求助?哪些是违规求助? 5036727
关于积分的说明 15184287
捐赠科研通 4843754
什么是DOI,文献DOI怎么找? 2596869
邀请新用户注册赠送积分活动 1549511
关于科研通互助平台的介绍 1508027