Non-Model-Based Monocular Pose Estimation Network for Uncooperative Spacecraft Using Convolutional Neural Network

航天器 姿势 人工智能 计算机科学 卷积神经网络 计算机视觉 人工神经网络 单眼 职位(财务) 工程类 航空航天工程 财务 经济
作者
Haoran Huang,Gaopeng Zhao,Dongqing Gu,Yuming Bo
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:21 (21): 24579-24590 被引量:12
标识
DOI:10.1109/jsen.2021.3115844
摘要

The pose estimation of uncooperative target spacecraft is a key technique in on-orbit servicing missions, among which the method based on monocular camera with low mass and power requirements has attracted widespread attention. However, monocular pose estimation methods mostly rely on the known 3D model of the target spacecraft, and non-model-based methods have low accuracy and even output the results when there is no target spacecraft in the image. In this paper, a non-model-based monocular pose estimation network for uncooperative spacecraft based on the convolutional neural network is proposed. This network uses three sub-networks to solve the problems of pose estimation and object detection. The first sub-network, called the attitude prediction sub-network, is used to predict the relative attitude of the target spacecraft by soft classification and error quaternion regression. The second sub-network, called the position regression sub-network, is used to predict the relative position of the target spacecraft by regression. The third sub-network called the object detection sub-network is used to detect the target spacecraft to determine whether the predicted pose needs to be output. The experimental results of the pose estimation of two public spacecraft demonstrate that the proposed method can effectively detect the target spacecraft and achieve better pose estimation accuracy than previous non-model-based methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助zzzz采纳,获得10
2秒前
贾克斯发布了新的文献求助10
2秒前
8R60d8应助沐颜采纳,获得10
3秒前
猫猫侠完成签到,获得积分10
5秒前
5秒前
6秒前
7秒前
叶123发布了新的文献求助10
7秒前
猪猪hero应助a11447采纳,获得10
8秒前
桐桐应助半截神经病采纳,获得10
10秒前
JamesPei应助结实的迎梅采纳,获得10
10秒前
shiy发布了新的文献求助10
11秒前
11秒前
LIU完成签到,获得积分10
12秒前
12秒前
luodaxia发布了新的文献求助10
14秒前
ding应助lili采纳,获得10
14秒前
领导范儿应助胡杨采纳,获得10
15秒前
bkagyin应助yuyuyu采纳,获得10
16秒前
Ava应助pharrah采纳,获得10
16秒前
17秒前
YMM完成签到,获得积分10
17秒前
香蕉觅云应助科研通管家采纳,获得10
17秒前
天天快乐应助科研通管家采纳,获得10
17秒前
柯一一应助科研通管家采纳,获得10
17秒前
今后应助科研通管家采纳,获得10
17秒前
shiy完成签到,获得积分20
17秒前
Ava应助科研通管家采纳,获得10
17秒前
上官若男应助科研通管家采纳,获得10
17秒前
ding应助科研通管家采纳,获得10
18秒前
wanci应助科研通管家采纳,获得10
18秒前
脑洞疼应助科研通管家采纳,获得20
18秒前
ding应助科研通管家采纳,获得10
18秒前
18秒前
18秒前
xl123完成签到,获得积分20
18秒前
小蘑菇应助科研通管家采纳,获得10
18秒前
18秒前
18秒前
18秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959677
求助须知:如何正确求助?哪些是违规求助? 3505910
关于积分的说明 11126825
捐赠科研通 3237865
什么是DOI,文献DOI怎么找? 1789389
邀请新用户注册赠送积分活动 871691
科研通“疑难数据库(出版商)”最低求助积分说明 802963