Non-Model-Based Monocular Pose Estimation Network for Uncooperative Spacecraft Using Convolutional Neural Network

航天器 姿势 人工智能 计算机科学 卷积神经网络 计算机视觉 人工神经网络 单眼 职位(财务) 工程类 航空航天工程 财务 经济
作者
Haoran Huang,Gaopeng Zhao,Dongqing Gu,Yuming Bo
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:21 (21): 24579-24590 被引量:12
标识
DOI:10.1109/jsen.2021.3115844
摘要

The pose estimation of uncooperative target spacecraft is a key technique in on-orbit servicing missions, among which the method based on monocular camera with low mass and power requirements has attracted widespread attention. However, monocular pose estimation methods mostly rely on the known 3D model of the target spacecraft, and non-model-based methods have low accuracy and even output the results when there is no target spacecraft in the image. In this paper, a non-model-based monocular pose estimation network for uncooperative spacecraft based on the convolutional neural network is proposed. This network uses three sub-networks to solve the problems of pose estimation and object detection. The first sub-network, called the attitude prediction sub-network, is used to predict the relative attitude of the target spacecraft by soft classification and error quaternion regression. The second sub-network, called the position regression sub-network, is used to predict the relative position of the target spacecraft by regression. The third sub-network called the object detection sub-network is used to detect the target spacecraft to determine whether the predicted pose needs to be output. The experimental results of the pose estimation of two public spacecraft demonstrate that the proposed method can effectively detect the target spacecraft and achieve better pose estimation accuracy than previous non-model-based methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
脑洞疼应助酷炫的皮带采纳,获得10
4秒前
4秒前
科研通AI2S应助张佳明采纳,获得10
4秒前
上官若男应助曹道消采纳,获得10
5秒前
君无名完成签到 ,获得积分10
7秒前
orixero应助文静芸遥采纳,获得10
7秒前
10秒前
好大一个赣宝完成签到,获得积分10
10秒前
12秒前
酷炫的皮带完成签到,获得积分10
13秒前
14秒前
14秒前
15秒前
大鲨鱼发布了新的文献求助10
16秒前
半壶月色半边天完成签到 ,获得积分10
16秒前
17秒前
18秒前
18秒前
曹道消发布了新的文献求助10
19秒前
研友_LOoomL发布了新的文献求助10
20秒前
22秒前
23秒前
自觉黎云完成签到,获得积分10
23秒前
Nan发布了新的文献求助30
25秒前
那种完成签到,获得积分10
26秒前
务实的凝天完成签到,获得积分10
26秒前
牛牛完成签到 ,获得积分10
26秒前
二两白茶发布了新的文献求助10
27秒前
自信的九娘完成签到,获得积分10
28秒前
28秒前
彭于晏应助LilyChen采纳,获得10
31秒前
小羊发布了新的文献求助10
31秒前
32秒前
33秒前
吃吃货发布了新的文献求助10
34秒前
Arthur完成签到 ,获得积分10
35秒前
ll发布了新的文献求助10
37秒前
小喵发布了新的文献求助10
37秒前
大鲨鱼完成签到,获得积分10
41秒前
高分求助中
Histotechnology: A Self-Instructional Text 5th Edition 2000
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3269234
求助须知:如何正确求助?哪些是违规求助? 2908735
关于积分的说明 8346699
捐赠科研通 2578940
什么是DOI,文献DOI怎么找? 1402517
科研通“疑难数据库(出版商)”最低求助积分说明 655468
邀请新用户注册赠送积分活动 634616