Non-Model-Based Monocular Pose Estimation Network for Uncooperative Spacecraft Using Convolutional Neural Network

航天器 姿势 人工智能 计算机科学 卷积神经网络 计算机视觉 人工神经网络 单眼 职位(财务) 工程类 航空航天工程 财务 经济
作者
Haoran Huang,Gaopeng Zhao,Dongqing Gu,Yuming Bo
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:21 (21): 24579-24590 被引量:12
标识
DOI:10.1109/jsen.2021.3115844
摘要

The pose estimation of uncooperative target spacecraft is a key technique in on-orbit servicing missions, among which the method based on monocular camera with low mass and power requirements has attracted widespread attention. However, monocular pose estimation methods mostly rely on the known 3D model of the target spacecraft, and non-model-based methods have low accuracy and even output the results when there is no target spacecraft in the image. In this paper, a non-model-based monocular pose estimation network for uncooperative spacecraft based on the convolutional neural network is proposed. This network uses three sub-networks to solve the problems of pose estimation and object detection. The first sub-network, called the attitude prediction sub-network, is used to predict the relative attitude of the target spacecraft by soft classification and error quaternion regression. The second sub-network, called the position regression sub-network, is used to predict the relative position of the target spacecraft by regression. The third sub-network called the object detection sub-network is used to detect the target spacecraft to determine whether the predicted pose needs to be output. The experimental results of the pose estimation of two public spacecraft demonstrate that the proposed method can effectively detect the target spacecraft and achieve better pose estimation accuracy than previous non-model-based methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我是老大应助Wulingfeng采纳,获得10
刚刚
少爷发布了新的文献求助10
1秒前
学海无涯苦作舟完成签到,获得积分10
1秒前
朴实钥匙完成签到,获得积分10
1秒前
沉默靳完成签到,获得积分10
1秒前
长干完成签到,获得积分20
2秒前
2秒前
搜集达人应助宋宋采纳,获得20
2秒前
彭于晏应助耿耿采纳,获得10
2秒前
3秒前
3秒前
3秒前
彭于晏应助yehen采纳,获得10
4秒前
chen关注了科研通微信公众号
4秒前
情怀应助polystyrene采纳,获得10
4秒前
5秒前
852应助kiball采纳,获得10
5秒前
郁乾完成签到,获得积分10
6秒前
华仔应助无辜的翠安采纳,获得10
6秒前
温暖的千山完成签到 ,获得积分10
6秒前
6秒前
7秒前
白梦瑶完成签到,获得积分10
7秒前
7秒前
善学以致用应助瘾9采纳,获得10
8秒前
8秒前
12完成签到,获得积分10
8秒前
无我完成签到 ,获得积分10
8秒前
滞光发布了新的文献求助10
9秒前
9秒前
9秒前
漂亮凌旋完成签到,获得积分10
9秒前
辣小扬发布了新的文献求助10
9秒前
9秒前
12发布了新的文献求助10
10秒前
龙卷风完成签到 ,获得积分10
10秒前
小新应助比保暖还要暖采纳,获得10
10秒前
11秒前
李爱国应助Keira采纳,获得10
11秒前
科研通AI6应助一心采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5609888
求助须知:如何正确求助?哪些是违规求助? 4694483
关于积分的说明 14882481
捐赠科研通 4720586
什么是DOI,文献DOI怎么找? 2544960
邀请新用户注册赠送积分活动 1509797
关于科研通互助平台的介绍 1473002