Non-Model-Based Monocular Pose Estimation Network for Uncooperative Spacecraft Using Convolutional Neural Network

航天器 姿势 人工智能 计算机科学 卷积神经网络 计算机视觉 人工神经网络 单眼 职位(财务) 工程类 航空航天工程 财务 经济
作者
Haoran Huang,Gaopeng Zhao,Dongqing Gu,Yuming Bo
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:21 (21): 24579-24590 被引量:12
标识
DOI:10.1109/jsen.2021.3115844
摘要

The pose estimation of uncooperative target spacecraft is a key technique in on-orbit servicing missions, among which the method based on monocular camera with low mass and power requirements has attracted widespread attention. However, monocular pose estimation methods mostly rely on the known 3D model of the target spacecraft, and non-model-based methods have low accuracy and even output the results when there is no target spacecraft in the image. In this paper, a non-model-based monocular pose estimation network for uncooperative spacecraft based on the convolutional neural network is proposed. This network uses three sub-networks to solve the problems of pose estimation and object detection. The first sub-network, called the attitude prediction sub-network, is used to predict the relative attitude of the target spacecraft by soft classification and error quaternion regression. The second sub-network, called the position regression sub-network, is used to predict the relative position of the target spacecraft by regression. The third sub-network called the object detection sub-network is used to detect the target spacecraft to determine whether the predicted pose needs to be output. The experimental results of the pose estimation of two public spacecraft demonstrate that the proposed method can effectively detect the target spacecraft and achieve better pose estimation accuracy than previous non-model-based methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
腿毛没啦完成签到,获得积分10
刚刚
1秒前
1秒前
1秒前
1秒前
gggggly发布了新的文献求助30
1秒前
娜娜发布了新的文献求助10
1秒前
大块吃肉发布了新的文献求助10
2秒前
2秒前
完美世界应助学术蝗虫采纳,获得10
2秒前
3秒前
zzmax完成签到,获得积分10
3秒前
花开富贵完成签到,获得积分10
3秒前
桐桐应助樊小雾采纳,获得10
3秒前
4秒前
cqk发布了新的文献求助10
4秒前
4秒前
隐形的觅夏完成签到,获得积分10
4秒前
香蕉觅云应助洋芋梦女采纳,获得10
4秒前
sue发布了新的文献求助10
4秒前
4秒前
852应助aosiyi采纳,获得10
4秒前
桐桐应助xiaolcj采纳,获得10
4秒前
4秒前
酷酷酷完成签到,获得积分10
4秒前
5秒前
5秒前
研友_VZG7GZ应助Rr采纳,获得10
5秒前
huihui关注了科研通微信公众号
5秒前
情怀应助cyz采纳,获得10
5秒前
uto完成签到,获得积分10
5秒前
5秒前
cc发布了新的文献求助20
5秒前
5秒前
zjy发布了新的文献求助10
6秒前
姚晨阳发布了新的文献求助10
6秒前
又双呦灼完成签到,获得积分10
6秒前
7秒前
阿十发布了新的文献求助10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667995
求助须知:如何正确求助?哪些是违规求助? 4888874
关于积分的说明 15122780
捐赠科研通 4826840
什么是DOI,文献DOI怎么找? 2584376
邀请新用户注册赠送积分活动 1538211
关于科研通互助平台的介绍 1496526