Machine Learning-Derived Echocardiographic Phenotypes Predict Heart Failure Incidence in Asymptomatic Individuals

无症状的 医学 队列 内科学 心室重构 舒张期 心脏病学 表型 入射(几何) 心力衰竭 血压 遗传学 生物 基因 光学 物理
作者
Masatake Kobayashi,Olivier Huttin,Martin Magnusson,João Pedro Ferreira,Erwan Bozec,Anne-Cécile Huby,Grégoire Preud’homme,Kévin Duarte,Zohra Lamiral,Kévin Dalleau,Emmanuel Bresso,Malika Smaïl‐Tabbone,Marie‐Dominique Devignes,Peter M. Nilsson,Margrét Leósdóttir,Jean‐Marc Boivin,Faı̈ez Zannad,Patrick Rossignol,Nicolas Girerd
出处
期刊:Jacc-cardiovascular Imaging [Elsevier BV]
卷期号:15 (2): 193-208 被引量:63
标识
DOI:10.1016/j.jcmg.2021.07.004
摘要

This study sought to identify homogenous echocardiographic phenotypes in community-based cohorts and assess their association with outcomes.Asymptomatic cardiac dysfunction leads to a high risk of long-term cardiovascular morbidity and mortality; however, better echocardiographic classification of asymptomatic individuals remains a challenge.Echocardiographic phenotypes were identified using K-means clustering in the first generation of the STANISLAS (Yearly non-invasive follow-up of Health status of Lorraine insured inhabitants) cohort (N = 827; mean age: 60 ± 5 years; men: 48%), and their associations with vascular function and circulating biomarkers were also assessed. These phenotypes were externally validated in the Malmö Preventive Project cohort (N = 1,394; mean age: 67 ± 6 years; men: 70%), and their associations with the composite of cardiovascular mortality (CVM) or heart failure hospitalization (HFH) were assessed as well.Three echocardiographic phenotypes were identified as "mostly normal (MN)" (n = 334), "diastolic changes (D)" (n = 323), and "diastolic changes with structural remodeling (D/S)" (n = 170). The D and D/S phenotypes had similar ages, body mass indices, cardiovascular risk factors, vascular impairments, and diastolic function changes. The D phenotype consisted mainly of women and featured increased levels of inflammatory biomarkers, whereas the D/S phenotype, consisted predominantly of men, displayed the highest values of left ventricular mass, volume, and remodeling biomarkers. The phenotypes were predicted based on a simple algorithm including e', left ventricular mass and volume (e'VM algorithm). In the Malmö cohort, subgroups derived from e'VM algorithm were significantly associated with a higher risk of CVM and HFH (adjusted HR in the D phenotype = 1.87; 95% CI: 1.04 to 3.37; adjusted HR in the D/S phenotype = 3.02; 95% CI: 1.71 to 5.34).Among asymptomatic, middle-aged individuals, echocardiographic data-driven classification based on the simple e'VM algorithm identified profiles with different long-term HF risk. (4th Visit at 17 Years of Cohort STANISLAS-Stanislas Ancillary Study ESCIF [STANISLASV4]; NCT01391442).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
phy完成签到,获得积分10
刚刚
Blank完成签到 ,获得积分10
1秒前
科研通AI5应助舒心的煎蛋采纳,获得10
2秒前
2秒前
郭达仲完成签到 ,获得积分10
4秒前
wangli发布了新的文献求助10
5秒前
Sephirex发布了新的文献求助30
6秒前
乐乐应助bobo采纳,获得10
7秒前
孤巷的猫完成签到,获得积分10
9秒前
10秒前
11秒前
11秒前
xiaoxiao发布了新的文献求助10
12秒前
隐世求开完成签到,获得积分10
14秒前
我是老大应助猪猪hero采纳,获得10
14秒前
细腻涛完成签到,获得积分10
15秒前
yttt发布了新的文献求助10
15秒前
jike发布了新的文献求助10
16秒前
害羞傲薇完成签到,获得积分10
16秒前
VicTarZ完成签到,获得积分10
17秒前
一世浮沉发布了新的文献求助30
18秒前
19秒前
栗子完成签到 ,获得积分10
21秒前
23秒前
Enoch发布了新的文献求助10
24秒前
bobo发布了新的文献求助10
25秒前
26秒前
繁荣的羊关注了科研通微信公众号
27秒前
早睡早起完成签到,获得积分10
28秒前
君君发布了新的文献求助10
29秒前
29秒前
29秒前
XHX完成签到,获得积分10
29秒前
猪猪hero发布了新的文献求助10
30秒前
兜兜揣满糖完成签到 ,获得积分10
31秒前
33秒前
33秒前
RJX发布了新的文献求助10
34秒前
liangyu发布了新的文献求助10
34秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
T/CAB 0344-2024 重组人源化胶原蛋白内毒素去除方法 1000
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3775692
求助须知:如何正确求助?哪些是违规求助? 3321247
关于积分的说明 10204384
捐赠科研通 3036169
什么是DOI,文献DOI怎么找? 1666017
邀请新用户注册赠送积分活动 797250
科研通“疑难数据库(出版商)”最低求助积分说明 757777