Structural Crack Detection from Benchmark Data Sets Using Pruned Fully Convolutional Networks

水准点(测量) 计算机科学 像素 卷积神经网络 噪音(视频) 数据集 分割 计算机视觉 人工智能 图像(数学) 地质学 大地测量学
作者
X.W. Ye,Tao Jin,Z. X. Li,Satheesha T.Y.,Yang Ding,Yingfeng Ou
出处
期刊:Journal of Structural Engineering-asce [American Society of Civil Engineers]
卷期号:147 (11) 被引量:25
标识
DOI:10.1061/(asce)st.1943-541x.0003140
摘要

Crack inspection is a crucial but labor-intensive work of maintenance for in-service bridges. Recently, the development of fully convolutional network (FCN) provides pixel-wise semantic segmentation, which is promising as a means of automatic crack detection. However, the demand for numerous training images with pixel-wise labels poses challenges. In this study, a benchmark data set called a bridge crack library (BCL) containing 11,000 pixel-wise labeled images with 256×256 resolution was established, which has 5,769 nonsteel crack images, 2,036 steel crack images, 3,195 noise images, and their labels. It is aimed at crack detection on multiple structural materials including masonry, concrete, and steel. The raw images were collected by multiple cameras from more than 50 in-service bridges during a period of 2 years. Various crack images with numerous crack forms and noise motifs in different scenarios were collected. Quality control measures were carried out during the raw image collection, subimage cropping, and subimage annotation steps. The established BCL was used to train three deep neural networks (DNNs) for applicability validation. The results indicate that the BCL could be applied to effectively train DNNs for crack detection and serve as a benchmark data set for performance evaluation of DNN models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搜集达人应助曹帅采纳,获得10
刚刚
孝铮发布了新的文献求助10
2秒前
3秒前
lulu猪发布了新的文献求助10
3秒前
4秒前
开朗渊思发布了新的文献求助10
4秒前
lemonfang发布了新的文献求助10
5秒前
海绵树完成签到 ,获得积分10
6秒前
6秒前
华仔应助孝铮采纳,获得10
6秒前
出金多多发布了新的文献求助10
8秒前
超级无心完成签到,获得积分10
8秒前
8秒前
科目三应助仔拉采纳,获得10
8秒前
甘楽完成签到,获得积分10
9秒前
kunkun发布了新的文献求助30
10秒前
陶醉觅夏发布了新的文献求助10
11秒前
小李发布了新的文献求助10
12秒前
yangxinLuo完成签到,获得积分20
12秒前
开朗渊思完成签到,获得积分10
12秒前
13秒前
曹帅发布了新的文献求助10
13秒前
废名完成签到,获得积分10
13秒前
在水一方应助lemonfang采纳,获得10
15秒前
16秒前
人小鸭儿大完成签到 ,获得积分10
17秒前
山山而川完成签到 ,获得积分10
17秒前
rosalieshi应助科研通管家采纳,获得30
17秒前
我是老大应助科研通管家采纳,获得10
17秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
烟花应助科研通管家采纳,获得10
18秒前
CipherSage应助科研通管家采纳,获得30
18秒前
慕青应助科研通管家采纳,获得10
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
Orange应助科研通管家采纳,获得10
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
酷波er应助科研通管家采纳,获得10
18秒前
19秒前
完美世界应助Zachary采纳,获得10
20秒前
nn发布了新的文献求助10
21秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137471
求助须知:如何正确求助?哪些是违规求助? 2788496
关于积分的说明 7786856
捐赠科研通 2444725
什么是DOI,文献DOI怎么找? 1300018
科研通“疑难数据库(出版商)”最低求助积分说明 625752
版权声明 601023