Structural Crack Detection from Benchmark Data Sets Using Pruned Fully Convolutional Networks

水准点(测量) 计算机科学 像素 卷积神经网络 噪音(视频) 数据集 分割 计算机视觉 人工智能 图像(数学) 地质学 大地测量学
作者
X.W. Ye,Tao Jin,Z. X. Li,Satheesha T.Y.,Yang Ding,Yingfeng Ou
出处
期刊:Journal of Structural Engineering-asce [American Society of Civil Engineers]
卷期号:147 (11) 被引量:25
标识
DOI:10.1061/(asce)st.1943-541x.0003140
摘要

Crack inspection is a crucial but labor-intensive work of maintenance for in-service bridges. Recently, the development of fully convolutional network (FCN) provides pixel-wise semantic segmentation, which is promising as a means of automatic crack detection. However, the demand for numerous training images with pixel-wise labels poses challenges. In this study, a benchmark data set called a bridge crack library (BCL) containing 11,000 pixel-wise labeled images with 256×256 resolution was established, which has 5,769 nonsteel crack images, 2,036 steel crack images, 3,195 noise images, and their labels. It is aimed at crack detection on multiple structural materials including masonry, concrete, and steel. The raw images were collected by multiple cameras from more than 50 in-service bridges during a period of 2 years. Various crack images with numerous crack forms and noise motifs in different scenarios were collected. Quality control measures were carried out during the raw image collection, subimage cropping, and subimage annotation steps. The established BCL was used to train three deep neural networks (DNNs) for applicability validation. The results indicate that the BCL could be applied to effectively train DNNs for crack detection and serve as a benchmark data set for performance evaluation of DNN models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Cynthia发布了新的文献求助30
刚刚
共享精神应助shenyanlei采纳,获得10
1秒前
wwww发布了新的文献求助10
1秒前
蔡菜菜完成签到,获得积分10
2秒前
852应助小余采纳,获得10
2秒前
饱满秋完成签到,获得积分10
3秒前
夜白发布了新的文献求助20
3秒前
搜集达人应助明月清风采纳,获得10
3秒前
希夷发布了新的文献求助10
4秒前
4秒前
爆米花应助通~采纳,获得10
4秒前
苏靖完成签到,获得积分10
4秒前
luoyutian发布了新的文献求助10
4秒前
4秒前
4秒前
5秒前
科研通AI5应助猪猪采纳,获得10
5秒前
5秒前
海绵体宝宝应助an采纳,获得10
6秒前
wwww完成签到,获得积分10
6秒前
6秒前
桐桐应助柔弱凡松采纳,获得10
6秒前
爆米花应助丶呆久自然萌采纳,获得10
7秒前
7秒前
wanyanjin应助流云采纳,获得10
7秒前
心花怒放发布了新的文献求助10
8秒前
DrYang发布了新的文献求助10
8秒前
8秒前
跑在颖完成签到,获得积分20
8秒前
希望天下0贩的0应助Jackson采纳,获得10
8秒前
徐徐发布了新的文献求助10
9秒前
落花生完成签到,获得积分10
9秒前
y123完成签到 ,获得积分10
9秒前
mnm完成签到,获得积分10
9秒前
9秒前
狂野雁丝应助小张张采纳,获得10
10秒前
qwt_hello关注了科研通微信公众号
10秒前
12彡完成签到,获得积分10
10秒前
虾仁发布了新的文献求助10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762