Structural Crack Detection from Benchmark Data Sets Using Pruned Fully Convolutional Networks

水准点(测量) 计算机科学 像素 卷积神经网络 噪音(视频) 数据集 分割 计算机视觉 人工智能 图像(数学) 地质学 大地测量学
作者
X.W. Ye,Tao Jin,Z. X. Li,Satheesha T.Y.,Yang Ding,Yingfeng Ou
出处
期刊:Journal of Structural Engineering-asce [American Society of Civil Engineers]
卷期号:147 (11) 被引量:25
标识
DOI:10.1061/(asce)st.1943-541x.0003140
摘要

Crack inspection is a crucial but labor-intensive work of maintenance for in-service bridges. Recently, the development of fully convolutional network (FCN) provides pixel-wise semantic segmentation, which is promising as a means of automatic crack detection. However, the demand for numerous training images with pixel-wise labels poses challenges. In this study, a benchmark data set called a bridge crack library (BCL) containing 11,000 pixel-wise labeled images with 256×256 resolution was established, which has 5,769 nonsteel crack images, 2,036 steel crack images, 3,195 noise images, and their labels. It is aimed at crack detection on multiple structural materials including masonry, concrete, and steel. The raw images were collected by multiple cameras from more than 50 in-service bridges during a period of 2 years. Various crack images with numerous crack forms and noise motifs in different scenarios were collected. Quality control measures were carried out during the raw image collection, subimage cropping, and subimage annotation steps. The established BCL was used to train three deep neural networks (DNNs) for applicability validation. The results indicate that the BCL could be applied to effectively train DNNs for crack detection and serve as a benchmark data set for performance evaluation of DNN models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Amb1tionG完成签到,获得积分10
1秒前
spirit发布了新的文献求助20
1秒前
2秒前
Yue完成签到,获得积分10
2秒前
2秒前
2秒前
4秒前
5秒前
穆一手完成签到 ,获得积分10
5秒前
MC123完成签到,获得积分10
5秒前
LLL完成签到,获得积分10
5秒前
乱武发布了新的文献求助10
6秒前
yufei发布了新的文献求助10
6秒前
8秒前
左肩微笑发布了新的文献求助10
8秒前
liu发布了新的文献求助10
9秒前
安详的自中完成签到,获得积分10
12秒前
wenhaw完成签到 ,获得积分10
12秒前
Akim应助snutcc采纳,获得10
14秒前
jundading发布了新的文献求助10
17秒前
文二目分完成签到 ,获得积分10
17秒前
17秒前
李爱国应助chang采纳,获得10
17秒前
薛妖怪完成签到,获得积分10
17秒前
dingbeicn完成签到,获得积分10
19秒前
奥特超曼应助安详的紫山采纳,获得10
20秒前
21秒前
wwwcy123完成签到,获得积分10
21秒前
刘林美发布了新的文献求助10
22秒前
huangyikun关注了科研通微信公众号
22秒前
25秒前
25秒前
25秒前
snutcc发布了新的文献求助10
27秒前
薛妖怪发布了新的文献求助10
27秒前
zyf完成签到,获得积分10
28秒前
Lucas应助不孤独的发卡采纳,获得30
28秒前
chang发布了新的文献求助10
28秒前
JW完成签到,获得积分10
31秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989797
求助须知:如何正确求助?哪些是违规求助? 3531910
关于积分的说明 11255394
捐赠科研通 3270563
什么是DOI,文献DOI怎么找? 1805008
邀请新用户注册赠送积分活动 882157
科研通“疑难数据库(出版商)”最低求助积分说明 809190