Utilizing machine learning to improve clinical trial design for acute respiratory distress syndrome

急性呼吸窘迫综合征 单变量 医学 急性呼吸窘迫 人口 临床试验 回顾性队列研究 重症监护室 多元统计 重症监护医学 队列 单变量分析 多元分析 急诊医学 机器学习 内科学 计算机科学 环境卫生
作者
Emma Schwager,Katharina Jansson,Asif Rahman,Sonja Schiffer,Yale Chang,Gregory Boverman,Brian D. Gross,Minnan Xu-Wilson,Philip Boehme,Hubert Truebel,Joseph J. Frassica
出处
期刊:npj digital medicine [Nature Portfolio]
卷期号:4 (1) 被引量:15
标识
DOI:10.1038/s41746-021-00505-5
摘要

Abstract Heterogeneous patient populations, complex pharmacology and low recruitment rates in the Intensive Care Unit (ICU) have led to the failure of many clinical trials. Recently, machine learning (ML) emerged as a new technology to process and identify big data relationships, enabling a new era in clinical trial design. In this study, we designed a ML model for predictively stratifying acute respiratory distress syndrome (ARDS) patients, ultimately reducing the required number of patients by increasing statistical power through cohort homogeneity. From the Philips eICU Research Institute (eRI) database, no less than 51,555 ARDS patients were extracted. We defined three subpopulations by outcome: (1) rapid death, (2) spontaneous recovery, and (3) long-stay patients. A retrospective univariate analysis identified highly predictive variables for each outcome. All 220 variables were used to determine the most accurate and generalizable model to predict long-stay patients. Multiclass gradient boosting was identified as the best-performing ML model. Whereas alterations in pH, bicarbonate or lactate proved to be strong predictors for rapid death in the univariate analysis, only the multivariate ML model was able to reliably differentiate the disease course of the long-stay outcome population (AUC of 0.77). We demonstrate the feasibility of prospective patient stratification using ML algorithms in the by far largest ARDS cohort reported to date. Our algorithm can identify patients with sufficiently long ARDS episodes to allow time for patients to respond to therapy, increasing statistical power. Further, early enrollment alerts may increase recruitment rate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
2秒前
kk完成签到,获得积分10
3秒前
葫芦瓢完成签到,获得积分10
3秒前
可爱的函函应助麦格布丁采纳,获得10
3秒前
上官若男应助wenni采纳,获得10
3秒前
小摩尔完成签到 ,获得积分10
3秒前
MchemG应助wsx采纳,获得10
3秒前
lkk完成签到,获得积分10
3秒前
YsGao完成签到 ,获得积分20
3秒前
3秒前
朴素海亦完成签到 ,获得积分10
4秒前
聪明静柏完成签到 ,获得积分10
4秒前
芜湖发布了新的文献求助10
4秒前
英勇小李完成签到,获得积分10
4秒前
情怀应助liangmh采纳,获得10
4秒前
4秒前
5秒前
Owen应助Henry采纳,获得10
5秒前
咕噜仔完成签到,获得积分10
5秒前
我是老大应助奈落采纳,获得10
5秒前
李健应助ddl战神采纳,获得10
6秒前
Antidote完成签到,获得积分10
7秒前
hj456完成签到,获得积分10
7秒前
twotwomi完成签到,获得积分10
7秒前
8秒前
MY2720完成签到,获得积分10
8秒前
YY完成签到,获得积分10
8秒前
鱼鱼发布了新的文献求助10
8秒前
SciGPT应助卡卡采纳,获得10
8秒前
星启发布了新的文献求助10
9秒前
是咸鱼呀完成签到,获得积分10
9秒前
灰底爆米花完成签到,获得积分10
9秒前
不安的以山完成签到,获得积分10
9秒前
清沐颖涵完成签到,获得积分10
10秒前
10秒前
powell应助cc采纳,获得10
10秒前
MY2720发布了新的文献求助10
11秒前
科研通AI5应助蝈蝈采纳,获得10
11秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009462
求助须知:如何正确求助?哪些是违规求助? 3549388
关于积分的说明 11301996
捐赠科研通 3283894
什么是DOI,文献DOI怎么找? 1810448
邀请新用户注册赠送积分活动 886287
科研通“疑难数据库(出版商)”最低求助积分说明 811316