Utilizing machine learning to improve clinical trial design for acute respiratory distress syndrome

急性呼吸窘迫综合征 单变量 医学 急性呼吸窘迫 人口 临床试验 回顾性队列研究 重症监护室 多元统计 重症监护医学 队列 单变量分析 多元分析 急诊医学 机器学习 内科学 计算机科学 环境卫生
作者
Emma Schwager,Katharina Jansson,Asif Rahman,Sonja Schiffer,Yale Chang,Gregory Boverman,Brian D. Gross,Minnan Xu-Wilson,Philip Boehme,Hubert Truebel,Joseph J. Frassica
出处
期刊:npj digital medicine [Springer Nature]
卷期号:4 (1) 被引量:15
标识
DOI:10.1038/s41746-021-00505-5
摘要

Abstract Heterogeneous patient populations, complex pharmacology and low recruitment rates in the Intensive Care Unit (ICU) have led to the failure of many clinical trials. Recently, machine learning (ML) emerged as a new technology to process and identify big data relationships, enabling a new era in clinical trial design. In this study, we designed a ML model for predictively stratifying acute respiratory distress syndrome (ARDS) patients, ultimately reducing the required number of patients by increasing statistical power through cohort homogeneity. From the Philips eICU Research Institute (eRI) database, no less than 51,555 ARDS patients were extracted. We defined three subpopulations by outcome: (1) rapid death, (2) spontaneous recovery, and (3) long-stay patients. A retrospective univariate analysis identified highly predictive variables for each outcome. All 220 variables were used to determine the most accurate and generalizable model to predict long-stay patients. Multiclass gradient boosting was identified as the best-performing ML model. Whereas alterations in pH, bicarbonate or lactate proved to be strong predictors for rapid death in the univariate analysis, only the multivariate ML model was able to reliably differentiate the disease course of the long-stay outcome population (AUC of 0.77). We demonstrate the feasibility of prospective patient stratification using ML algorithms in the by far largest ARDS cohort reported to date. Our algorithm can identify patients with sufficiently long ARDS episodes to allow time for patients to respond to therapy, increasing statistical power. Further, early enrollment alerts may increase recruitment rate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
李爱国应助dxh采纳,获得10
2秒前
windsea完成签到,获得积分0
2秒前
科研通AI2S应助安详的书本采纳,获得10
3秒前
科研通AI2S应助LN采纳,获得10
4秒前
WEN完成签到,获得积分10
4秒前
jia发布了新的文献求助10
8秒前
tutulunzi完成签到,获得积分0
11秒前
Singularity应助byecslx采纳,获得10
11秒前
星辰大海应助整齐凌萱采纳,获得10
12秒前
罗渲童发布了新的文献求助10
14秒前
niwei发布了新的文献求助10
15秒前
15秒前
天天快乐应助zoe666采纳,获得10
16秒前
kchrisuzad完成签到,获得积分10
16秒前
heolmes应助安详的书本采纳,获得10
18秒前
18秒前
20秒前
2568269431发布了新的文献求助10
22秒前
Fancy应助大气沛槐采纳,获得10
23秒前
口腔医生发布了新的文献求助10
23秒前
26秒前
整齐凌萱发布了新的文献求助10
26秒前
27秒前
29秒前
咂咂完成签到,获得积分10
30秒前
liuliuliu关注了科研通微信公众号
30秒前
哎哟我去发布了新的文献求助10
32秒前
32秒前
34秒前
舒伯特完成签到 ,获得积分10
37秒前
37秒前
QQQQ发布了新的文献求助10
38秒前
39秒前
韩涵完成签到 ,获得积分10
39秒前
40秒前
田様应助byecslx采纳,获得10
40秒前
Yang完成签到,获得积分10
40秒前
zoe666发布了新的文献求助10
40秒前
年轻的凌柏完成签到 ,获得积分10
40秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138860
求助须知:如何正确求助?哪些是违规求助? 2789795
关于积分的说明 7792655
捐赠科研通 2446147
什么是DOI,文献DOI怎么找? 1300890
科研通“疑难数据库(出版商)”最低求助积分说明 626066
版权声明 601079