Utilizing machine learning to improve clinical trial design for acute respiratory distress syndrome

急性呼吸窘迫综合征 单变量 医学 急性呼吸窘迫 人口 临床试验 回顾性队列研究 重症监护室 多元统计 重症监护医学 队列 单变量分析 多元分析 急诊医学 机器学习 内科学 计算机科学 环境卫生
作者
Emma Schwager,Katharina Jansson,Asif Rahman,Sonja Schiffer,Yale Chang,Gregory Boverman,Brian D. Gross,Minnan Xu-Wilson,Philip Boehme,Hubert Truebel,Joseph J. Frassica
出处
期刊:npj digital medicine [Springer Nature]
卷期号:4 (1) 被引量:15
标识
DOI:10.1038/s41746-021-00505-5
摘要

Abstract Heterogeneous patient populations, complex pharmacology and low recruitment rates in the Intensive Care Unit (ICU) have led to the failure of many clinical trials. Recently, machine learning (ML) emerged as a new technology to process and identify big data relationships, enabling a new era in clinical trial design. In this study, we designed a ML model for predictively stratifying acute respiratory distress syndrome (ARDS) patients, ultimately reducing the required number of patients by increasing statistical power through cohort homogeneity. From the Philips eICU Research Institute (eRI) database, no less than 51,555 ARDS patients were extracted. We defined three subpopulations by outcome: (1) rapid death, (2) spontaneous recovery, and (3) long-stay patients. A retrospective univariate analysis identified highly predictive variables for each outcome. All 220 variables were used to determine the most accurate and generalizable model to predict long-stay patients. Multiclass gradient boosting was identified as the best-performing ML model. Whereas alterations in pH, bicarbonate or lactate proved to be strong predictors for rapid death in the univariate analysis, only the multivariate ML model was able to reliably differentiate the disease course of the long-stay outcome population (AUC of 0.77). We demonstrate the feasibility of prospective patient stratification using ML algorithms in the by far largest ARDS cohort reported to date. Our algorithm can identify patients with sufficiently long ARDS episodes to allow time for patients to respond to therapy, increasing statistical power. Further, early enrollment alerts may increase recruitment rate.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
111完成签到 ,获得积分10
1秒前
牧长一完成签到 ,获得积分0
1秒前
2秒前
进击的PhD应助yuanshl1985采纳,获得20
2秒前
桐桐应助111采纳,获得10
2秒前
111关闭了111文献求助
3秒前
研友_VZG7GZ应助义气的采文采纳,获得10
3秒前
英姑应助义气的采文采纳,获得10
3秒前
科研通AI6应助义气的采文采纳,获得10
3秒前
丘比特应助义气的采文采纳,获得10
3秒前
烟花应助义气的采文采纳,获得10
3秒前
完美世界应助义气的采文采纳,获得10
3秒前
汉堡包应助义气的采文采纳,获得10
3秒前
科研通AI6应助义气的采文采纳,获得10
4秒前
Lucas应助义气的采文采纳,获得10
4秒前
在水一方应助义气的采文采纳,获得10
4秒前
Ariel完成签到,获得积分10
4秒前
4秒前
5秒前
雪白的采白完成签到,获得积分20
5秒前
5秒前
搜集达人应助Magic1987采纳,获得10
5秒前
6秒前
简简完成签到,获得积分10
7秒前
7秒前
希望天下0贩的0应助sanyue采纳,获得10
7秒前
酸酸完成签到,获得积分10
8秒前
8秒前
8秒前
进击的PhD应助紧张的惜梦采纳,获得50
8秒前
qaz发布了新的文献求助10
8秒前
8秒前
yangyajie发布了新的文献求助10
9秒前
鱿鱼完成签到,获得积分10
9秒前
852应助TANG采纳,获得10
9秒前
10秒前
10秒前
打工人发布了新的文献求助10
11秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642103
求助须知:如何正确求助?哪些是违规求助? 4758150
关于积分的说明 15016411
捐赠科研通 4800600
什么是DOI,文献DOI怎么找? 2566140
邀请新用户注册赠送积分活动 1524244
关于科研通互助平台的介绍 1483901