Automated detection of liver steatosis in ultrasound images using convolutional neural networks

脂肪变性 人工智能 计算机科学 卷积神经网络 脂肪肝 超声波 模式识别(心理学) 学习迁移 深度学习 人工神经网络 放射科 医学 病理 内科学 疾病
作者
Umar Farooq Mohammmad,Mohamed Almekkawy
出处
期刊:Journal of the Acoustical Society of America [Acoustical Society of America]
卷期号:149 (4_Supplement): A114-A115 被引量:4
标识
DOI:10.1121/10.0004692
摘要

Ultrasound imaging is the most commonly applied imaging modality for the diagnosis of fatty liver disease. It is considered malignant if there is more than 5% of fatty hepatorenal steatosis. The classical methods to classify liver steatosis usually involve experienced physicians or radiologists to identity them. In this work, we introduce a Convolutional Neural Network (CNN) based approach to classify the malignant and benign fatty livers from ultrasound images. The pre-trained network of Inception Resnet which is initially trained on the ImageNet dataset is used for transfer learning on B-mode ultrasound liver images for classification. We used the open-source ultrasound liver dataset of 55 patients with 10 image sequences for each making a total of 550 images with 170 benign and 340 malignant samples. Since the dataset size is small for training, we have applied various data-augmentation techniques and have employed the transfer-learning approach using Inception ResNet architecture. We were able to achieve, using our approach, a very high classification accuracy of 98.48%, whereas the area under the curve of the classical hepatorenal index method is 0.959 and the Gray-level co-occurrence algorithm is 0.893.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
皮老师发布了新的文献求助10
刚刚
幸福大白完成签到,获得积分10
1秒前
2秒前
Cml发布了新的文献求助30
3秒前
河大谢广坤完成签到,获得积分10
3秒前
4秒前
5秒前
111111发布了新的文献求助10
5秒前
8秒前
陌予发布了新的文献求助10
9秒前
10秒前
缓慢的开山完成签到 ,获得积分10
12秒前
13秒前
量子星尘发布了新的文献求助10
15秒前
ash完成签到,获得积分20
17秒前
17秒前
18秒前
英俊的铭应助月月采纳,获得10
21秒前
ash发布了新的文献求助100
21秒前
周也发布了新的文献求助10
21秒前
文献菜鸟完成签到 ,获得积分10
22秒前
淅淅12345完成签到,获得积分20
22秒前
小二郎应助zhan采纳,获得10
22秒前
25秒前
25秒前
osmanthus完成签到,获得积分10
25秒前
feng1235完成签到,获得积分10
27秒前
拓木幸子完成签到,获得积分10
28秒前
热心市民小红花应助陈昊采纳,获得10
28秒前
29秒前
lcr发布了新的文献求助10
30秒前
Ginkgo完成签到 ,获得积分10
31秒前
安静海露完成签到,获得积分10
31秒前
32秒前
zhan完成签到,获得积分10
33秒前
顾矜应助anna采纳,获得10
33秒前
朴素的士晋完成签到 ,获得积分10
33秒前
35秒前
思源应助YJ888采纳,获得10
35秒前
安静海露发布了新的文献求助10
36秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989069
求助须知:如何正确求助?哪些是违规求助? 3531351
关于积分的说明 11253589
捐赠科研通 3269939
什么是DOI,文献DOI怎么找? 1804851
邀请新用户注册赠送积分活动 882074
科研通“疑难数据库(出版商)”最低求助积分说明 809073