亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Automated detection of liver steatosis in ultrasound images using convolutional neural networks

脂肪变性 人工智能 计算机科学 卷积神经网络 脂肪肝 超声波 模式识别(心理学) 学习迁移 深度学习 人工神经网络 放射科 医学 病理 内科学 疾病
作者
Umar Farooq Mohammmad,Mohamed Almekkawy
出处
期刊:Journal of the Acoustical Society of America [Acoustical Society of America]
卷期号:149 (4_Supplement): A114-A115 被引量:4
标识
DOI:10.1121/10.0004692
摘要

Ultrasound imaging is the most commonly applied imaging modality for the diagnosis of fatty liver disease. It is considered malignant if there is more than 5% of fatty hepatorenal steatosis. The classical methods to classify liver steatosis usually involve experienced physicians or radiologists to identity them. In this work, we introduce a Convolutional Neural Network (CNN) based approach to classify the malignant and benign fatty livers from ultrasound images. The pre-trained network of Inception Resnet which is initially trained on the ImageNet dataset is used for transfer learning on B-mode ultrasound liver images for classification. We used the open-source ultrasound liver dataset of 55 patients with 10 image sequences for each making a total of 550 images with 170 benign and 340 malignant samples. Since the dataset size is small for training, we have applied various data-augmentation techniques and have employed the transfer-learning approach using Inception ResNet architecture. We were able to achieve, using our approach, a very high classification accuracy of 98.48%, whereas the area under the curve of the classical hepatorenal index method is 0.959 and the Gray-level co-occurrence algorithm is 0.893.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
三毛完成签到 ,获得积分10
15秒前
22秒前
26秒前
39秒前
矮小的祥发布了新的文献求助10
44秒前
50秒前
优美芸发布了新的文献求助10
57秒前
优美芸完成签到,获得积分10
1分钟前
1分钟前
归尘发布了新的文献求助10
1分钟前
SciGPT应助iiii采纳,获得10
1分钟前
香蕉觅云应助科研通管家采纳,获得10
1分钟前
Ava应助科研通管家采纳,获得10
1分钟前
丘比特应助科研通管家采纳,获得10
1分钟前
六六完成签到 ,获得积分10
1分钟前
2分钟前
Willow发布了新的文献求助10
2分钟前
呼噜噜完成签到,获得积分10
2分钟前
2分钟前
扣子完成签到,获得积分10
2分钟前
呼噜噜发布了新的文献求助10
2分钟前
3分钟前
3分钟前
大胆的碧菡完成签到,获得积分10
3分钟前
yuchuan应助科研通管家采纳,获得10
3分钟前
在水一方应助科研通管家采纳,获得10
3分钟前
科目三应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
4分钟前
盛乾衣发布了新的文献求助10
4分钟前
盛乾衣完成签到,获得积分10
4分钟前
zozox完成签到 ,获得积分10
4分钟前
5分钟前
徐凤年完成签到,获得积分10
5分钟前
田様应助科研通管家采纳,获得10
5分钟前
5分钟前
zxcvvbb1001完成签到 ,获得积分10
6分钟前
量子星尘发布了新的文献求助10
6分钟前
6分钟前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Video: Lagrangian coherent structures in the flow field of a fluidic oscillator 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 961
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5449954
求助须知:如何正确求助?哪些是违规求助? 4557893
关于积分的说明 14265132
捐赠科研通 4481121
什么是DOI,文献DOI怎么找? 2454700
邀请新用户注册赠送积分活动 1445480
关于科研通互助平台的介绍 1421323