Gray level co-occurrence matrix (GLCM) texture based crop classification using low altitude remote sensing platforms

人工智能 支持向量机 随机森林 朴素贝叶斯分类器 计算机科学 灰度级 模式识别(心理学) 无人机 机器学习 遥感 像素 地理 遗传学 生物
作者
Naveed Iqbal,Rafia Mumtaz,Uferah Shafi,Syed Mohammad Hassan Zaidi
出处
期刊:PeerJ [PeerJ]
卷期号:7: e536-e536 被引量:86
标识
DOI:10.7717/peerj-cs.536
摘要

Crop classification in early phenological stages has been a difficult task due to spectrum similarity of different crops. For this purpose, low altitude platforms such as drones have great potential to provide high resolution optical imagery where Machine Learning (ML) applied to classify different types of crops. In this research work, crop classification is performed at different phenological stages using optical images which are obtained from drone. For this purpose, gray level co-occurrence matrix (GLCM) based features are extracted from underlying gray scale images collected by the drone. To classify the different types of crops, different ML algorithms including Random Forest (RF), Naive Bayes (NB), Neural Network (NN) and Support Vector Machine (SVM) are applied. The results showed that the ML algorithms performed much better on GLCM features as compared to gray scale images with a margin of 13.65% in overall accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
BowieHuang应助梁权伍采纳,获得10
刚刚
1秒前
wulalala发布了新的文献求助30
1秒前
蒲公英完成签到 ,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
2秒前
英俊的铭应助reck采纳,获得10
2秒前
2秒前
迅速的易巧完成签到 ,获得积分10
2秒前
深情安青应助科研通管家采纳,获得10
2秒前
爆米花应助科研通管家采纳,获得10
2秒前
打打应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
丘比特应助科研通管家采纳,获得10
2秒前
领导范儿应助科研通管家采纳,获得10
2秒前
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
2秒前
香蕉诗蕊应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
2秒前
暮商零七应助科研通管家采纳,获得10
2秒前
ting应助科研通管家采纳,获得10
3秒前
NexusExplorer应助科研通管家采纳,获得20
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
CipherSage应助科研通管家采纳,获得10
3秒前
打打应助科研通管家采纳,获得30
3秒前
3秒前
深情安青应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
JamesPei应助科研通管家采纳,获得10
3秒前
暮商零七应助科研通管家采纳,获得10
3秒前
3秒前
我是老大应助科研通管家采纳,获得200
3秒前
NexusExplorer应助科研通管家采纳,获得10
3秒前
NexusExplorer应助科研通管家采纳,获得10
3秒前
3秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718762
求助须知:如何正确求助?哪些是违规求助? 5254117
关于积分的说明 15287024
捐赠科研通 4868786
什么是DOI,文献DOI怎么找? 2614471
邀请新用户注册赠送积分活动 1564338
关于科研通互助平台的介绍 1521791