化学
促炎细胞因子
免疫学
细胞生物学
关节炎
白细胞介素6
消炎药
细胞因子
骨吸收
肿瘤坏死因子α
兰克尔
软骨细胞
作者
Ericka P. von Kaeppler,Qian Wang,Harini Raghu,Michelle S. Bloom,Heidi Wong,William H. Robinson
标识
DOI:10.1016/j.clim.2021.108784
摘要
Abstract Objective Osteoarthritis (OA), the leading cause of joint failure, is characterized by breakdown of articular cartilage and remodeling of subchondral bone in synovial joints. Despite the high prevalence and debilitating effects of OA, no disease-modifying drugs exist. Increasing evidence, including genetic variants of the interleukin 4 (IL-4) and IL-4 receptor genes, implicates a role for IL-4 in OA, however, the mechanism underlying IL-4 function in OA remains unknown. Here, we investigated the role of IL-4 in OA pathogenesis. Methods Il4-, myeloid-specific-Il4ra-, and Stat6-deficient and control mice were subjected to destabilization of the medial meniscus to induce OA. Macrophages, osteoclasts, and synovial explants were stimulated with IL-4 in vitro, and their function and expression profiles characterized. Results Mice lacking IL-4, IL-4Ra in myeloid cells, or STAT6 developed exacerbated cartilage damage and osteophyte formation relative to WT controls. In vitro analyses revealed that IL-4 downregulates osteoarthritis-associated genes, enhances macrophage phagocytosis of cartilage debris, and inhibits osteoclast differentiation and activation via the type I receptor. Conclusion Our findings demonstrate that IL-4 protects against osteoarthritis in a myeloid and STAT6-dependent manner. Further, IL-4 can promote an immunomodulatory microenvironment in which joint-resident macrophages polarize towards an M2 phenotype and efficiently clear pro-inflammatory debris, and osteoclasts maintain a homeostatic level of activity in subchondral bone. These findings support a role for IL-4 modulation of myeloid cell types in maintenance of joint health and identify a pathway that could provide therapeutic benefit for osteoarthritis.
科研通智能强力驱动
Strongly Powered by AbleSci AI