NaNbO3‐(Bi0.5Li0.5)TiO3 Lead‐Free Relaxor Ferroelectric Capacitors with Superior Energy‐Storage Performances via Multiple Synergistic Design

材料科学 电容器 储能 陶瓷 铁电性 拉曼光谱 正交晶系 反铁电性 极化(电化学) 电介质 光电子学 凝聚态物理 衍射 电压 电气工程 光学 热力学 复合材料 物理化学 物理 工程类 功率(物理) 化学
作者
Aiwen Xie,Ruzhong Zuo,Zhenliang Qiao,Zhengqian Fu,Tengfei Hu,Linfeng Fei
出处
期刊:Advanced Energy Materials [Wiley]
卷期号:11 (28) 被引量:213
标识
DOI:10.1002/aenm.202101378
摘要

Abstract Relaxor ferroelectric (FE) ceramic capacitors have attracted increasing attention for their excellent energy‐storage performance. However, it is extremely difficult to achieve desirable comprehensive energy‐storage features required for industrial applications. In this work, very high recoverable energy density W rec ≈ 8.73 J cm –3 , high efficiency η ≈ 80.1%, ultrafast discharge rate of <85 ns, and temperature‐insensitive high W rec and η ( W rec ≈ 5.73 ± 4% J cm –3 , η ≈ 75 ± 6%, 25–200 °C) are simultaneously obtained in 0.68NaNbO 3 ‐0.32(Bi 0.5 Li 0.5 )TiO 3 relaxor FE ceramics by introducing various polarization configurations in combination with microstructure modification. The structure mechanism for the excellent energy‐storage performance is disclosed by analyzing in situ structure evolution on multiple scales during loading/unloading by means of transmission electron microscopy and Raman spectroscopy. Both local regions consisting of different‐scale polar nanodomains and a nonpolar matrix, and local orthorhombic symmetry remaining with electric fields ensure a linear‐like polarization response within a wide field and temperature range owing to significantly delayed polarization saturation. The stabilization of orthorhombic FE phases rather than antiferroelectric orthorhombic phases in NaNbO 3 after adding (Bi 0.5 Li 0.5 )TiO 3 is also explored by means of X‐ray diffraction, dielectric properties, and selected area electron diffraction. In comparison with antiferroelectric ceramics, NaNbO 3 ‐based relaxor FE ceramics provide a new solution to successfully design next‐generation pulsed power capacitors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
务实涔雨完成签到,获得积分10
1秒前
1秒前
2秒前
maox1aoxin应助youcclucky采纳,获得30
3秒前
王晓雪完成签到,获得积分10
4秒前
4秒前
半缘君完成签到,获得积分10
4秒前
6秒前
6秒前
顺心冬易发布了新的文献求助10
7秒前
badada完成签到,获得积分10
7秒前
Zx关闭了Zx文献求助
7秒前
8秒前
王晓雪发布了新的文献求助10
8秒前
8秒前
huohuo143发布了新的文献求助10
10秒前
务实涔雨发布了新的文献求助10
14秒前
14秒前
maox1aoxin应助Zhuzhu采纳,获得200
15秒前
发疯的游子完成签到 ,获得积分10
15秒前
期望应助科研通管家采纳,获得20
17秒前
彭于晏应助科研通管家采纳,获得10
17秒前
天天快乐应助科研通管家采纳,获得10
17秒前
Jasper应助科研通管家采纳,获得10
18秒前
上官若男应助科研通管家采纳,获得10
18秒前
Orange应助科研通管家采纳,获得10
18秒前
慕青应助科研通管家采纳,获得10
18秒前
黑虎应助科研通管家采纳,获得10
18秒前
大模型应助科研通管家采纳,获得10
18秒前
香蕉觅云应助科研通管家采纳,获得10
19秒前
天天快乐应助科研通管家采纳,获得10
19秒前
19秒前
wanci应助科研通管家采纳,获得10
19秒前
QR发布了新的文献求助10
19秒前
21秒前
未来化学家完成签到,获得积分10
23秒前
23秒前
使用过有几个完成签到,获得积分10
25秒前
荒天帝完成签到 ,获得积分10
25秒前
淡然向松完成签到 ,获得积分10
25秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3310257
求助须知:如何正确求助?哪些是违规求助? 2943243
关于积分的说明 8513288
捐赠科研通 2618458
什么是DOI,文献DOI怎么找? 1431082
科研通“疑难数据库(出版商)”最低求助积分说明 664374
邀请新用户注册赠送积分活动 649542