Adversarial Instance Augmentation for Building Change Detection in Remote Sensing Images

变更检测 计算机科学 背景(考古学) 钥匙(锁) 转化(遗传学) 集合(抽象数据类型) 深度学习 发电机(电路理论) 人工智能 数据集 训练集 班级(哲学) 生成语法 机器学习 对抗制 数据挖掘 图像(数学) 物理 古生物学 功率(物理) 基因 化学 程序设计语言 生物 量子力学 生物化学 计算机安全
作者
Hao Chen,Wenyuan Li,Zhenwei Shi
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-16 被引量:83
标识
DOI:10.1109/tgrs.2021.3066802
摘要

Training deep learning-based change detection (CD) models heavily relies on large labeled data sets. However, it is time-consuming and labor-intensive to collect large-scale bitemporal images that contain building change, due to both its rarity and sparsity. Contemporary methods to tackle the data insufficiency mainly focus on transformation-based global image augmentation and cost-sensitive algorithms. In this article, we propose a novel data-level solution, namely, Instance-level change Augmentation (IAug), to generate bitemporal images that contain changes involving plenty and diverse buildings by leveraging generative adversarial training. The key of IAug is to blend synthesized building instances onto appropriate positions of one of the bitemporal images. To achieve this, a building generator is employed to produce realistic building images that are consistent with the given layouts. Diverse styles are later transferred onto the generated images. We further propose context-aware blending for a realistic composite of the building and the background. We augment the existing CD data sets and also design a simple yet effective CD model—CD network (CDNet). Our method (CDNet + IAug) has achieved state-of-the-art results in two building CD data sets (LEVIR-CD and WHU-CD). Interestingly, we achieve comparable results with only 20% of the training data as the current state-of-the-art methods using 100% data. Extensive experiments have validated the effectiveness of the proposed IAug. Our augmented data set has a lower risk of class imbalance than the original one. Conventional learning on the synthesized data set outperforms several popular cost-sensitive algorithms on the original data set. Our code and data are available at https://github.com/justchenhao/IAug_CDNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
魈maker发布了新的文献求助10
刚刚
天真书南发布了新的文献求助10
刚刚
刚刚
zcb发布了新的文献求助10
刚刚
优雅的WAN完成签到 ,获得积分10
刚刚
Dding发布了新的文献求助20
刚刚
1秒前
麻辣牛肉完成签到,获得积分10
1秒前
田様应助荀沛珊采纳,获得10
2秒前
活泼的雪旋完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
白衣发布了新的文献求助10
3秒前
善学以致用应助香菜采纳,获得10
3秒前
略略略应助亭子采纳,获得10
3秒前
隐形曼青应助生椰拿铁采纳,获得10
4秒前
4秒前
小吃惑完成签到,获得积分20
4秒前
4秒前
wwl发布了新的文献求助10
5秒前
5秒前
zz完成签到,获得积分10
5秒前
Alone离殇完成签到,获得积分10
6秒前
JamesPei应助科研通管家采纳,获得10
6秒前
NexusExplorer应助科研通管家采纳,获得10
6秒前
顾矜应助科研通管家采纳,获得10
6秒前
mmm发布了新的文献求助10
6秒前
6秒前
小吃惑发布了新的文献求助10
6秒前
卡卡西应助科研通管家采纳,获得20
6秒前
大个应助科研通管家采纳,获得10
6秒前
李健应助科研通管家采纳,获得10
6秒前
djiwisksk66应助科研通管家采纳,获得10
6秒前
李爱国应助科研通管家采纳,获得30
7秒前
所所应助科研通管家采纳,获得10
7秒前
大模型应助科研通管家采纳,获得10
7秒前
Lucas应助科研通管家采纳,获得10
7秒前
所所应助科研通管家采纳,获得10
7秒前
丘比特应助科研通管家采纳,获得10
7秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958693
求助须知:如何正确求助?哪些是违规求助? 3504939
关于积分的说明 11121216
捐赠科研通 3236311
什么是DOI,文献DOI怎么找? 1788726
邀请新用户注册赠送积分活动 871307
科研通“疑难数据库(出版商)”最低求助积分说明 802691