Adversarial Instance Augmentation for Building Change Detection in Remote Sensing Images

变更检测 计算机科学 背景(考古学) 钥匙(锁) 转化(遗传学) 集合(抽象数据类型) 深度学习 发电机(电路理论) 人工智能 数据集 训练集 班级(哲学) 生成语法 机器学习 对抗制 数据挖掘 图像(数学) 物理 古生物学 功率(物理) 基因 化学 程序设计语言 生物 量子力学 生物化学 计算机安全
作者
Hao Chen,Wenyuan Li,Zhenwei Shi
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-16 被引量:83
标识
DOI:10.1109/tgrs.2021.3066802
摘要

Training deep learning-based change detection (CD) models heavily relies on large labeled data sets. However, it is time-consuming and labor-intensive to collect large-scale bitemporal images that contain building change, due to both its rarity and sparsity. Contemporary methods to tackle the data insufficiency mainly focus on transformation-based global image augmentation and cost-sensitive algorithms. In this article, we propose a novel data-level solution, namely, Instance-level change Augmentation (IAug), to generate bitemporal images that contain changes involving plenty and diverse buildings by leveraging generative adversarial training. The key of IAug is to blend synthesized building instances onto appropriate positions of one of the bitemporal images. To achieve this, a building generator is employed to produce realistic building images that are consistent with the given layouts. Diverse styles are later transferred onto the generated images. We further propose context-aware blending for a realistic composite of the building and the background. We augment the existing CD data sets and also design a simple yet effective CD model—CD network (CDNet). Our method (CDNet + IAug) has achieved state-of-the-art results in two building CD data sets (LEVIR-CD and WHU-CD). Interestingly, we achieve comparable results with only 20% of the training data as the current state-of-the-art methods using 100% data. Extensive experiments have validated the effectiveness of the proposed IAug. Our augmented data set has a lower risk of class imbalance than the original one. Conventional learning on the synthesized data set outperforms several popular cost-sensitive algorithms on the original data set. Our code and data are available at https://github.com/justchenhao/IAug_CDNet.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
wyz发布了新的文献求助10
刚刚
SJJ应助虹虹采纳,获得10
刚刚
1秒前
1秒前
1秒前
dgd应助懦弱的若血采纳,获得10
1秒前
2秒前
活泼的电脑完成签到,获得积分10
2秒前
AAA完成签到,获得积分20
2秒前
3秒前
李雨完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
空空完成签到 ,获得积分10
3秒前
cai发布了新的文献求助10
3秒前
邢广贺完成签到,获得积分10
4秒前
Ava应助wjt采纳,获得10
4秒前
身柏发布了新的文献求助10
4秒前
亭子完成签到 ,获得积分10
4秒前
4秒前
4秒前
5秒前
6秒前
wyx发布了新的文献求助10
6秒前
科研狗发布了新的文献求助10
6秒前
7秒前
刘欢发布了新的文献求助10
7秒前
7秒前
LAOA完成签到,获得积分10
7秒前
nicole_Jones完成签到,获得积分20
7秒前
bkagyin应助cai采纳,获得10
8秒前
紧张的毛衣完成签到,获得积分10
8秒前
今天放假了吗完成签到,获得积分10
9秒前
可可豆完成签到,获得积分10
9秒前
JamesPei应助个性湘采纳,获得10
9秒前
小马发布了新的文献求助10
9秒前
LAOA发布了新的文献求助10
10秒前
10秒前
浮游应助无语啦采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5551982
求助须知:如何正确求助?哪些是违规求助? 4636809
关于积分的说明 14645565
捐赠科研通 4578578
什么是DOI,文献DOI怎么找? 2511030
邀请新用户注册赠送积分活动 1486209
关于科研通互助平台的介绍 1457502