多硫化物
催化作用
无定形固体
硫黄
化学工程
电化学
材料科学
阴极
电催化剂
纳米技术
化学
有机化学
电极
物理化学
冶金
电解质
工程类
作者
Guang Xia,Lishu Zhang,Jiajia Ye,Zhanghua Fu,Xuting Li,Xiaoxia Yang,Zhiqiang Zheng,Chuanzhong Chen,Cheng Hu
标识
DOI:10.1016/j.cej.2021.133705
摘要
Catalytic materials have recently been demonstrated to be effective in addressing the critical challenges of polysulfide shuttling and low utilization of sulfur in Li-S batteries. Although amorphous materials show advantages in typical electrocatalysis processes such as water splitting, the vast majority of catalytic materials developed for the sulfur cathodes are crystalline. Herein, we demonstrate the enhanced electrochemical performance of the amorphous FeP phase (aFeP) derived from a self-oxidation process of its crystalline counterpart. Electrochemical measurements and theoretical calculation reveal that the structural anisotropy of crystalline FeP is not in favour of important properties such as polysulfide binding energy, catalytic activity and electrical conductivity. Amorphous aFeP effectively overcomes these issues. Moreover, amorphous aFeP provides additional and stronger binding sites, enhanced electron exchanging between Fe-S and P-S atoms, as well as reduced HOMO-LUMO gap of the aFeP-Li2S4 adsorption system, leading to significantly improved catalytic effects especially for the capacity-limiting liquid–solid conversions. High specific capacities are achieved up to 5C and pouch cells with a high areal capacity (6.3 mAh cm−2) are also demonstrated. This study provides useful insights for the future development of amorphous catalytic materials in high-performance Li-S cathodes.
科研通智能强力驱动
Strongly Powered by AbleSci AI