Distributionally robust chance constrained planning model for energy storage plants based on Kullback–Leibler divergence

储能 数学优化 地铁列车时刻表 风力发电 计算机科学 可再生能源 分歧(语言学) 豆马勃属 能源规划 稳健优化 可靠性工程 功率(物理) 工程类 数学 量子力学 语言学 操作系统 电气工程 物理 哲学
作者
Jian Le,Xiaobing Liao,Lina Zhang,Tao Mao
出处
期刊:Energy Reports [Elsevier]
卷期号:7: 5203-5213 被引量:6
标识
DOI:10.1016/j.egyr.2021.08.116
摘要

Nowadays, the high penetration of renewable energy, with variable and unpredictable nature, poses major challenges to operation and planning studies of power systems. Employing energy storage plants has been introduced as an effective solution to alleviate these challenges. Several studies have been presented in the literature to provide a framework for planning studies of energy storage plants. However, they usually have two main drawbacks: (i) ignoring the lifetime varying characteristic of energy storage, (ii) inability to model the charge/discharge schedule of energy storage accurately. This paper amends the abovementioned shortcomings by proposing a distributionally robust planning method based on Kullback–Leibler divergence. According to the power function of lifespan of electrochemical energy storage, the lifespan model of energy storage plants with equivalent full cycles times is established. Considering the lifespan model constraints of the energy storage plant and system operating constraints, the planning model of energy storage plants is constructed with the lifespan cycle cost and units’ operation cost as the objective. Furthermore, the ambiguity set of wind farm output based on Kullback–Leibler divergence is embedded into the planning model of energy storage plants, and the distributionally robust planning model of energy storage plant is transformed into mixed integer linear programming model by sample average approximation method. A modified IEEE-30 bus system with two wind farms is studied to demonstrate the effectiveness. The results show distributionally robust planning model reduces about 10% planning cost compared with the traditional robust planning model, and increases the energy storage capacity by 12MW compared with the stochastic planning method. Other, the planning cost of energy storage plants will decrease by 5% ∼ 23% when the wind abandoned rate increases by 2% and decreases slowly with the increase of abandoned wind rate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
嘟嘟发布了新的文献求助10
刚刚
1秒前
苏照杭应助jym采纳,获得10
1秒前
1秒前
1秒前
眼睛大又蓝完成签到,获得积分10
1秒前
kangkang完成签到,获得积分10
1秒前
2秒前
2秒前
绵绵完成签到,获得积分10
2秒前
3秒前
Mlwwq完成签到,获得积分10
3秒前
3秒前
小皮蛋儿完成签到,获得积分10
3秒前
lyn发布了新的文献求助10
3秒前
JUSTs0so完成签到,获得积分10
4秒前
失联者完成签到,获得积分10
4秒前
感性的神级完成签到,获得积分10
4秒前
眯眯眼的谷冬完成签到 ,获得积分10
4秒前
4秒前
花莫凋零发布了新的文献求助10
5秒前
szh123完成签到,获得积分10
5秒前
5秒前
安息香发布了新的文献求助10
5秒前
核桃完成签到,获得积分10
5秒前
丹dan发布了新的文献求助10
5秒前
5秒前
科研通AI5应助大方嵩采纳,获得10
6秒前
6秒前
HYG发布了新的文献求助30
6秒前
6秒前
宝贝发布了新的文献求助10
6秒前
FashionBoy应助tulip采纳,获得10
6秒前
万泉部诗人完成签到,获得积分10
7秒前
文静千愁发布了新的文献求助10
7秒前
YAN发布了新的文献求助10
7秒前
马洛发布了新的文献求助10
7秒前
7秒前
qiqi完成签到,获得积分10
7秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762