Distributionally robust chance constrained planning model for energy storage plants based on Kullback–Leibler divergence

储能 数学优化 地铁列车时刻表 风力发电 计算机科学 可再生能源 分歧(语言学) 豆马勃属 能源规划 稳健优化 可靠性工程 功率(物理) 工程类 数学 量子力学 语言学 操作系统 电气工程 物理 哲学
作者
Jian Le,Xiaobing Liao,Lina Zhang,Tao Mao
出处
期刊:Energy Reports [Elsevier]
卷期号:7: 5203-5213 被引量:6
标识
DOI:10.1016/j.egyr.2021.08.116
摘要

Nowadays, the high penetration of renewable energy, with variable and unpredictable nature, poses major challenges to operation and planning studies of power systems. Employing energy storage plants has been introduced as an effective solution to alleviate these challenges. Several studies have been presented in the literature to provide a framework for planning studies of energy storage plants. However, they usually have two main drawbacks: (i) ignoring the lifetime varying characteristic of energy storage, (ii) inability to model the charge/discharge schedule of energy storage accurately. This paper amends the abovementioned shortcomings by proposing a distributionally robust planning method based on Kullback–Leibler divergence. According to the power function of lifespan of electrochemical energy storage, the lifespan model of energy storage plants with equivalent full cycles times is established. Considering the lifespan model constraints of the energy storage plant and system operating constraints, the planning model of energy storage plants is constructed with the lifespan cycle cost and units’ operation cost as the objective. Furthermore, the ambiguity set of wind farm output based on Kullback–Leibler divergence is embedded into the planning model of energy storage plants, and the distributionally robust planning model of energy storage plant is transformed into mixed integer linear programming model by sample average approximation method. A modified IEEE-30 bus system with two wind farms is studied to demonstrate the effectiveness. The results show distributionally robust planning model reduces about 10% planning cost compared with the traditional robust planning model, and increases the energy storage capacity by 12MW compared with the stochastic planning method. Other, the planning cost of energy storage plants will decrease by 5% ∼ 23% when the wind abandoned rate increases by 2% and decreases slowly with the increase of abandoned wind rate.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不愿完成签到,获得积分20
1秒前
jj完成签到,获得积分10
1秒前
NIJJJJJIA完成签到 ,获得积分10
1秒前
1秒前
kunnao完成签到,获得积分10
2秒前
bkagyin应助七岁就很丑采纳,获得10
3秒前
3秒前
3秒前
4秒前
XING发布了新的文献求助20
4秒前
科研通AI6应助BW打工仔采纳,获得30
4秒前
Owen应助胡大嘴先生采纳,获得10
4秒前
4秒前
桐桐应助迷人的爆米花采纳,获得10
5秒前
5秒前
恶毒的婆婆完成签到,获得积分10
5秒前
6秒前
zszz完成签到 ,获得积分10
6秒前
7秒前
达文西完成签到,获得积分10
7秒前
XBJ发布了新的文献求助10
8秒前
艾七七发布了新的文献求助10
8秒前
方汀发布了新的文献求助30
8秒前
华仔应助自由的中蓝采纳,获得10
8秒前
科研通AI6应助缥缈树叶采纳,获得20
9秒前
yy完成签到,获得积分10
9秒前
学术虫完成签到,获得积分10
10秒前
11秒前
小可发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
11秒前
nsk发布了新的文献求助10
12秒前
12秒前
向阳而生完成签到,获得积分10
12秒前
12秒前
66完成签到,获得积分10
12秒前
12秒前
小蘑菇应助孙木楠采纳,获得10
12秒前
12秒前
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5660641
求助须知:如何正确求助?哪些是违规求助? 4835016
关于积分的说明 15091506
捐赠科研通 4819242
什么是DOI,文献DOI怎么找? 2579181
邀请新用户注册赠送积分活动 1533670
关于科研通互助平台的介绍 1492441