Multi-Omics Profiling Identifies Risk Hypoxia-Related Signatures for Ovarian Cancer Prognosis

免疫系统 比例危险模型 肿瘤科 医学 免疫疗法 恶性肿瘤 卵巢癌 内科学 生物信息学 生物 肿瘤微环境 癌症 缺氧(环境) 免疫学 有机化学 化学 氧气
作者
Xingyu Chen,Hua Lan,Dong He,Runshi Xu,Yao Zhang,Ying Cheng,Haotian Chen,Songshu Xiao,Ke Cao
出处
期刊:Frontiers in Immunology [Frontiers Media SA]
卷期号:12 被引量:16
标识
DOI:10.3389/fimmu.2021.645839
摘要

Background Ovarian cancer (OC) has the highest mortality rate among gynecologic malignancy. Hypoxia is a driver of the malignant progression in OC, which results in poor prognosis. We herein aimed to develop a validated model that was based on the hypoxia genes to systematically evaluate its prognosis in tumor immune microenvironment (TIM). Results We identified 395 hypoxia-immune genes using weighted gene co-expression network analysis (WGCNA). We then established a nine hypoxia-related genes risk model using least absolute shrinkage and selection operator (LASSO) Cox regression, which efficiently distinguished high-risk patients from low-risk ones. We found that high-risk patients were significantly related to poor prognosis. The high-risk group showed unique immunosuppressive microenvironment, lower antigen presentation, and higher levels of inhibitory cytokines. There were also significant differences in somatic copy number alterations (SCNAs) and mutations between the high- and low-risk groups, indicating immune escape in the high-risk group. Tumor immune dysfunction and exclusion (TIDE) and SubMap algorithms showed that low-risk patients are significantly responsive to programmed cell death protein-1 (PD-1) inhibitors. Conclusions In this study, we highlighted the clinical significance of hypoxia in OC and established a hypoxia-related model for predicting prognosis and providing potential immunotherapy strategies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
无限的思柔完成签到,获得积分20
3秒前
3秒前
4秒前
4秒前
4秒前
4秒前
bzlish发布了新的文献求助10
6秒前
sct发布了新的文献求助10
7秒前
超大杯冰摇红莓黑加仑茶完成签到,获得积分10
8秒前
冷傲的从雪完成签到 ,获得积分10
8秒前
8秒前
LL发布了新的文献求助10
9秒前
乐乐应助开心仙人掌采纳,获得20
9秒前
wangchong完成签到,获得积分10
9秒前
Pumpkin完成签到,获得积分10
9秒前
Rui_Rui完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
10秒前
皮老八完成签到 ,获得积分10
11秒前
合适遥应助大力的惠采纳,获得30
11秒前
丘比特应助bzlish采纳,获得10
12秒前
12秒前
cc应助lu采纳,获得10
12秒前
wpk9904发布了新的文献求助10
13秒前
16秒前
精明人达发布了新的文献求助10
18秒前
19秒前
风趣的碧琴完成签到,获得积分10
19秒前
19秒前
19秒前
21秒前
完美世界应助Rui采纳,获得10
21秒前
CC发布了新的文献求助10
22秒前
小鸡快跑完成签到,获得积分10
23秒前
ccc发布了新的文献求助10
23秒前
24秒前
李健应助糟糕的铁锤采纳,获得10
24秒前
坦率雪枫发布了新的文献求助10
25秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642531
求助须知:如何正确求助?哪些是违规求助? 4759094
关于积分的说明 15017959
捐赠科研通 4801089
什么是DOI,文献DOI怎么找? 2566399
邀请新用户注册赠送积分活动 1524484
关于科研通互助平台的介绍 1484011