Multi-Omics Profiling Identifies Risk Hypoxia-Related Signatures for Ovarian Cancer Prognosis

免疫系统 比例危险模型 肿瘤科 医学 免疫疗法 恶性肿瘤 卵巢癌 内科学 生物信息学 生物 肿瘤微环境 癌症 缺氧(环境) 免疫学 有机化学 化学 氧气
作者
Xingyu Chen,Hua Lan,Dong He,Runshi Xu,Yao Zhang,Ying Cheng,Haotian Chen,Songshu Xiao,Ke Cao
出处
期刊:Frontiers in Immunology [Frontiers Media SA]
卷期号:12 被引量:16
标识
DOI:10.3389/fimmu.2021.645839
摘要

Background Ovarian cancer (OC) has the highest mortality rate among gynecologic malignancy. Hypoxia is a driver of the malignant progression in OC, which results in poor prognosis. We herein aimed to develop a validated model that was based on the hypoxia genes to systematically evaluate its prognosis in tumor immune microenvironment (TIM). Results We identified 395 hypoxia-immune genes using weighted gene co-expression network analysis (WGCNA). We then established a nine hypoxia-related genes risk model using least absolute shrinkage and selection operator (LASSO) Cox regression, which efficiently distinguished high-risk patients from low-risk ones. We found that high-risk patients were significantly related to poor prognosis. The high-risk group showed unique immunosuppressive microenvironment, lower antigen presentation, and higher levels of inhibitory cytokines. There were also significant differences in somatic copy number alterations (SCNAs) and mutations between the high- and low-risk groups, indicating immune escape in the high-risk group. Tumor immune dysfunction and exclusion (TIDE) and SubMap algorithms showed that low-risk patients are significantly responsive to programmed cell death protein-1 (PD-1) inhibitors. Conclusions In this study, we highlighted the clinical significance of hypoxia in OC and established a hypoxia-related model for predicting prognosis and providing potential immunotherapy strategies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陈丞澄完成签到,获得积分10
刚刚
1秒前
Ava应助che采纳,获得10
1秒前
蓦然发布了新的文献求助10
2秒前
李健应助负责的方盒采纳,获得10
3秒前
听听不想读啦完成签到 ,获得积分10
3秒前
量子星尘发布了新的文献求助10
4秒前
茶多一点酚完成签到,获得积分10
5秒前
5秒前
可爱的函函应助落后翠柏采纳,获得10
6秒前
悠悠应助奶油布丁采纳,获得10
7秒前
希望天下0贩的0应助蓦然采纳,获得10
8秒前
8秒前
8秒前
烦烦烦发布了新的文献求助10
9秒前
9秒前
我是老大应助qaz采纳,获得10
10秒前
11秒前
11秒前
端庄的香薇完成签到,获得积分10
12秒前
12秒前
云漫山完成签到 ,获得积分10
12秒前
叶帆完成签到,获得积分10
13秒前
桐桐应助3927456843采纳,获得30
13秒前
che发布了新的文献求助10
13秒前
共享精神应助MeetAgainLZH采纳,获得10
14秒前
14秒前
xing发布了新的文献求助10
14秒前
123完成签到 ,获得积分10
14秒前
15秒前
欧贤书发布了新的文献求助10
15秒前
天天快乐应助Gryphon采纳,获得10
16秒前
粗犷的冷霜完成签到,获得积分10
17秒前
小马发布了新的文献求助10
18秒前
Sunny完成签到,获得积分10
18秒前
小满发布了新的文献求助10
18秒前
19秒前
20秒前
科目三应助董秋白采纳,获得10
20秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637805
求助须知:如何正确求助?哪些是违规求助? 4744034
关于积分的说明 15000235
捐赠科研通 4795945
什么是DOI,文献DOI怎么找? 2562246
邀请新用户注册赠送积分活动 1521747
关于科研通互助平台的介绍 1481704