Multi-Omics Profiling Identifies Risk Hypoxia-Related Signatures for Ovarian Cancer Prognosis

免疫系统 比例危险模型 肿瘤科 医学 免疫疗法 恶性肿瘤 卵巢癌 内科学 生物信息学 生物 肿瘤微环境 癌症 缺氧(环境) 免疫学 有机化学 化学 氧气
作者
Xingyu Chen,Hua Lan,Dong He,Runshi Xu,Yao Zhang,Ying Cheng,Haotian Chen,Songshu Xiao,Ke Cao
出处
期刊:Frontiers in Immunology [Frontiers Media SA]
卷期号:12 被引量:16
标识
DOI:10.3389/fimmu.2021.645839
摘要

Background Ovarian cancer (OC) has the highest mortality rate among gynecologic malignancy. Hypoxia is a driver of the malignant progression in OC, which results in poor prognosis. We herein aimed to develop a validated model that was based on the hypoxia genes to systematically evaluate its prognosis in tumor immune microenvironment (TIM). Results We identified 395 hypoxia-immune genes using weighted gene co-expression network analysis (WGCNA). We then established a nine hypoxia-related genes risk model using least absolute shrinkage and selection operator (LASSO) Cox regression, which efficiently distinguished high-risk patients from low-risk ones. We found that high-risk patients were significantly related to poor prognosis. The high-risk group showed unique immunosuppressive microenvironment, lower antigen presentation, and higher levels of inhibitory cytokines. There were also significant differences in somatic copy number alterations (SCNAs) and mutations between the high- and low-risk groups, indicating immune escape in the high-risk group. Tumor immune dysfunction and exclusion (TIDE) and SubMap algorithms showed that low-risk patients are significantly responsive to programmed cell death protein-1 (PD-1) inhibitors. Conclusions In this study, we highlighted the clinical significance of hypoxia in OC and established a hypoxia-related model for predicting prognosis and providing potential immunotherapy strategies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
怕孤单应助小七采纳,获得10
2秒前
Lliang发布了新的文献求助10
3秒前
读读读完成签到,获得积分10
3秒前
3秒前
4秒前
4秒前
6秒前
usdivff完成签到,获得积分10
6秒前
7秒前
李四发布了新的文献求助10
7秒前
8秒前
8秒前
8秒前
rafaam发布了新的文献求助10
9秒前
cxw完成签到,获得积分10
9秒前
NexusExplorer应助河神采纳,获得10
9秒前
Mic应助morena采纳,获得10
9秒前
9秒前
10秒前
謃河鷺起完成签到,获得积分10
10秒前
shinble发布了新的文献求助10
10秒前
11秒前
usdivff发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
11秒前
夏冰雹完成签到 ,获得积分10
12秒前
大模型应助LL爱读书采纳,获得10
12秒前
Lucas应助pero采纳,获得10
12秒前
13秒前
吮指原味鸡完成签到,获得积分20
13秒前
13秒前
violet发布了新的文献求助10
14秒前
杨涵发布了新的文献求助10
14秒前
14秒前
WUHUIWEN完成签到,获得积分10
14秒前
慕青应助香蕉傲菡采纳,获得30
15秒前
皮咻完成签到,获得积分10
15秒前
和光同尘完成签到,获得积分10
15秒前
16秒前
慕青应助zw采纳,获得10
17秒前
hh发布了新的文献求助10
17秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5620874
求助须知:如何正确求助?哪些是违规求助? 4705521
关于积分的说明 14932362
捐赠科研通 4763666
什么是DOI,文献DOI怎么找? 2551356
邀请新用户注册赠送积分活动 1513817
关于科研通互助平台的介绍 1474715