压电
电场
铁电性
材料科学
压电系数
凝聚态物理
萤石
对称(几何)
物理
纳米技术
光电子学
复合材料
电介质
冶金
量子力学
数学
几何学
作者
Dae‐Sung Park,Mahmoud Hadad,Lukas M. Riemer,Reinis Ignata̅ns,David Spirito,Vincenzo Esposito,Vasiliki Tileli,Nicolas Gauquelin,Д. С. Чезганов,Daen Jannis,Johan Verbeeck,Semën Gorfman,Nini Pryds,Paul Muralt,Dragan Damjanović
出处
期刊:Science
[American Association for the Advancement of Science (AAAS)]
日期:2022-02-11
卷期号:375 (6581): 653-657
被引量:72
标识
DOI:10.1126/science.abm7497
摘要
Piezoelectrics are materials that linearly deform in response to an applied electric field. As a fundamental prerequisite, piezoelectric materials must have a noncentrosymmetric crystal structure. For more than a century, this has remained a major obstacle for finding piezoelectric materials. We circumvented this limitation by breaking the crystallographic symmetry and inducing large and sustainable piezoelectric effects in centrosymmetric materials by the electric field–induced rearrangement of oxygen vacancies. Our results show the generation of extraordinarily large piezoelectric responses [with piezoelectric strain coefficients ( d 33 ) of ~200,000 picometers per volt at millihertz frequencies] in cubic fluorite gadolinium-doped CeO 2− x films, which are two orders of magnitude larger than the responses observed in the presently best-known lead-based piezoelectric relaxor–ferroelectric oxide at kilohertz frequencies. These findings provide opportunities to design piezoelectric materials from environmentally friendly centrosymmetric ones.
科研通智能强力驱动
Strongly Powered by AbleSci AI