自噬
生物
刺
细胞生物学
干扰素
病毒学
单纯疱疹病毒
病毒
微生物学
细胞凋亡
遗传学
工程类
航空航天工程
作者
Tianle Gu,Dandan Yu,Ling Xu,Yulin Yao,Yong‐Gang Yao
出处
期刊:Journal of Immunology
[The American Association of Immunologists]
日期:2021-12-01
卷期号:207 (11): 2673-2680
被引量:16
标识
DOI:10.4049/jimmunol.2100325
摘要
Stimulator of IFN genes (STING) is a key molecule that binds to cyclic dinucleotides produced by the cyclic GMP-AMP synthase to activate IFN expression and autophagy in the fight against microbial infection. The regulation of STING in the activation of IFN expression has been extensively reported, whereas the regulation of STING in the initiation of autophagy is still insufficiently determined. IFN-inducible guanylate-binding proteins (GBPs) are central to the cell-autonomous immunity in defending a host against viral, bacterial, and protozoan infections. In this study using the Chinese tree shrew (Tupaia belangeri chinensis), which is genetically close to primates, we found that Tupaia GBP1 (tGBP1) combines with Tupaia STING (tSTING), promotes autophagy, and moderately inhibits HSV type 1 (HSV-1) infection. The antiviral effects of tGBP1 are IFN independent. Mechanistically, tGBP1 interacted with tSTING, Tupaia sequestosome 1, and Tupaia microtubule associated protein 1 L chain 3, forming a complex which promotes autophagy in response to HSV-1 infection. This function of tGBP1 against HSV-1 infection was lost in tSTING knockout cells. Overexpression of either tSTING or its mutant tSTING-ΔCTT that can only activate autophagy rescued the anti-HSV-1 activity of tGBP1 in tSTING knockout cells. Our study not only elucidated the underlying mechanism of tGBP1 antiviral activity against HSV-1 infection, but also uncovered the regulation of tSTING in the initiation of autophagy in response to HSV-1 infection.
科研通智能强力驱动
Strongly Powered by AbleSci AI