The iron doped tungsten-oxide (Fe and WO3) thin film with different morphology and crystalline structures were obtained for different substrate temperatures at the oxygen pressure of 14.66 Pa. The Fe-doped WO3 films were deposited by pulsed laser deposition (PLD). The influence of the substrate temperature on the surface and on the crystalline phases of the films was studied. The XRD (X-ray diffraction) analysis indicates the changing in the crystalline phases from γ-monoclinic to a mixture of γ-monoclinic and hexagonal phases dependent on the temperature of annealing and as-grown films. Related to the as-grown and annealing films conditions, the SEM (scanning electron microscopy) shows a change in the image surface from nanoneedles, to nanoporous, and further to long nanowires and broad nanobands. Energy-dispersive X-ray spectroscopy (EDX) shows the elemental composition of the Fe-doped WO3 film as-grown and after annealing treatment. Raman spectroscopy presented the main vibration mode of the Fe-doped WO3 thin film. The optical energy bandgap of the films is decreasing as the substrate temperature increases.