Parkinson’s Disease Recognition Using SPECT Image and Interpretable AI: A Tutorial

人工智能 反向传播 掷骰子 计算机科学 模式识别(心理学) Sørensen–骰子系数 深度学习 口译(哲学) 机器学习 人工神经网络 图像(数学) 图像分割 数学 统计 程序设计语言
作者
Theerasarn Pianpanit,Sermkiat Lolak,Phattarapong Sawangjai,Thapanun Sudhawiyangkul,Theerawit Wilaiprasitporn
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:21 (20): 22304-22316 被引量:24
标识
DOI:10.1109/jsen.2021.3077949
摘要

In the past few years, there are several researches on Parkinson's disease (PD) recognition using single-photon emission computed tomography (SPECT) images with deep learning (DL) approach. However, the DL model's complexity usually results in difficultmodel interpretation when used in clinical. Even though there are multiple interpretation methods available for the DL model, there is no evidence of which method is suitable for PD recognition application. This tutorial aims to demonstrate the procedure to choose a suitable interpretationmethod for the PD recogni-tion model. We exhibit four DCNN architectures as an example and introduce six well-known interpretationmethods. Finally, we propose an evaluation method to measure the interpretation performance and a method to use the interpreted feedback for assisting in model selection. The evaluation demonstrates that the guided backpropagation and SHAP interpretation methods are suitable for PD recognition methods in different aspects. Guided backpropagation has the best ability to show fine-grained importance, which is proven by the highest Dice coefficient and lowest mean square error. On the other hand, SHAP can generate a better quality heatmap at the uptake depletion location, which outperforms other methods in discriminating the difference between PD and NC subjects. Shortly, the introduced interpretationmethods can contribute to not only the PD recognition application but also to sensor data processing in an AI Era (interpretable-AI) as feedback in constructing well-suited deep learning architectures for specific applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小明小红完成签到,获得积分10
刚刚
Hello应助swordlee采纳,获得10
刚刚
研友_VZG7GZ应助快乐的钥匙采纳,获得10
1秒前
2秒前
高天雨发布了新的文献求助10
3秒前
DannyNickolov完成签到,获得积分20
3秒前
CipherSage应助乘云采纳,获得10
3秒前
LELE完成签到,获得积分10
3秒前
CipherSage应助超级气泡水采纳,获得10
5秒前
七七完成签到,获得积分10
8秒前
9秒前
Lucas应助JW.Huang采纳,获得10
10秒前
10秒前
DannyNickolov发布了新的文献求助10
13秒前
14秒前
艳子完成签到,获得积分10
14秒前
皮皮发布了新的文献求助10
15秒前
17秒前
18秒前
18秒前
ChristineY完成签到,获得积分10
18秒前
18秒前
充电宝应助咖啡八块八采纳,获得10
19秒前
无敌LI完成签到 ,获得积分10
20秒前
小幻发布了新的文献求助30
21秒前
旅途之人发布了新的文献求助10
22秒前
23秒前
lilili2060发布了新的文献求助10
24秒前
25秒前
williamwzt发布了新的文献求助10
25秒前
25秒前
26秒前
nenoaowu发布了新的文献求助10
27秒前
29秒前
32秒前
32秒前
33秒前
33秒前
艳子发布了新的文献求助10
33秒前
34秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555383
求助须知:如何正确求助?哪些是违规求助? 3131010
关于积分的说明 9389629
捐赠科研通 2830491
什么是DOI,文献DOI怎么找? 1556069
邀请新用户注册赠送积分活动 726432
科研通“疑难数据库(出版商)”最低求助积分说明 715738