Shape-controlling effects of hydrohalic and carboxylic acids in TiO2 nanoparticle synthesis

锐钛矿 纳米颗粒 背景(考古学) 吸附 密度泛函理论 催化作用 材料科学 从头算 反应性(心理学) 纳米技术 化学物理 化学工程 化学 计算化学 物理化学 有机化学 光催化 医学 古生物学 替代医学 病理 工程类 生物
作者
Kai Sellschopp,Wolfgang Heckel,Johannes Gäding,Clemens J. Schröter,Andreas Hensel,Tobias Voßmeyer,Horst Weller,Stefan Müller,Gregor B. Vonbun-Feldbauer
出处
期刊:Journal of Chemical Physics [American Institute of Physics]
卷期号:152 (6) 被引量:8
标识
DOI:10.1063/1.5138717
摘要

The ability to synthesize nanoparticles (NPs), here TiO2, of different shapes in a controlled and reproducible way is of high significance for a wide range of fields including catalysis and materials design. Different NP shapes exhibit variations of emerging facets, and processes such as adsorption, diffusion, and catalytic activity are, in general, facet sensitive. Therefore, NP properties, e.g., the reactivity of NPs or the stability of assembled NPs, depend on their shape. We combine computational modeling based on density functional theory with experimental techniques such as transmission electron microscopy, energy-dispersive x-ray spectroscopy, and x-ray powder diffraction to investigate the ability of various adsorbates, including hydrohalic and carboxylic acids, to influence NP shape. This approach allows us to identify mechanisms stabilizing specific surface facets and thus to predict NP shapes using computational model systems and to experimentally characterize the synthesized NPs in detail. Shape-controlled anatase TiO2 NPs are synthesized here in agreement with the calculations in platelet and bi-pyramidal shapes by employing different precursors. The importance of the physical conditions and chemical environment during synthesis, e.g., via competitive adsorption or changes in the chemical potentials, is studied via ab initio thermodynamics, which allows us to set previous and new results in a broader context and to highlight potentials for additional synthesis routes and NP shapes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
phenolphthalein完成签到 ,获得积分10
刚刚
喜洋洋完成签到 ,获得积分10
1秒前
不知道完成签到 ,获得积分10
1秒前
夜琉璃应助pdskfc采纳,获得40
2秒前
噗噗发布了新的文献求助10
2秒前
4秒前
Eva发布了新的文献求助10
4秒前
5秒前
1123048683wm完成签到,获得积分10
5秒前
123完成签到,获得积分10
5秒前
6秒前
sln完成签到,获得积分10
6秒前
zzz发布了新的文献求助10
9秒前
大模型应助怕孤单的易形采纳,获得10
9秒前
9秒前
噗噗完成签到,获得积分10
10秒前
佳远完成签到,获得积分10
11秒前
qujue001发布了新的文献求助10
12秒前
隐形曼青应助向阳采纳,获得10
12秒前
实打实打算d完成签到,获得积分10
12秒前
淘气乌龙茶完成签到 ,获得积分10
13秒前
13秒前
magic_sweets完成签到,获得积分10
13秒前
zzz完成签到,获得积分10
13秒前
有苏完成签到,获得积分20
13秒前
Tao2023发布了新的文献求助10
13秒前
13秒前
14秒前
岳莹晓完成签到 ,获得积分10
14秒前
Max完成签到,获得积分20
14秒前
所所应助jingle采纳,获得20
16秒前
资新烟完成签到 ,获得积分10
16秒前
安静的马里奥关注了科研通微信公众号
16秒前
16秒前
wwww发布了新的文献求助10
17秒前
小土豆完成签到 ,获得积分10
17秒前
17秒前
优美紫槐发布了新的文献求助10
19秒前
小高完成签到,获得积分10
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5605657
求助须知:如何正确求助?哪些是违规求助? 4690241
关于积分的说明 14862785
捐赠科研通 4702214
什么是DOI,文献DOI怎么找? 2542212
邀请新用户注册赠送积分活动 1507831
关于科研通互助平台的介绍 1472132