锐钛矿
纳米颗粒
背景(考古学)
吸附
密度泛函理论
催化作用
材料科学
从头算
反应性(心理学)
纳米技术
化学物理
化学工程
化学
计算化学
物理化学
有机化学
光催化
古生物学
病理
工程类
生物
替代医学
医学
作者
Kai Sellschopp,Wolfgang Heckel,Johannes Gäding,Clemens J. Schröter,Andreas Hensel,Tobias Voßmeyer,Horst Weller,Stefan Müller,Gregor B. Vonbun-Feldbauer
摘要
The ability to synthesize nanoparticles (NPs), here TiO2, of different shapes in a controlled and reproducible way is of high significance for a wide range of fields including catalysis and materials design. Different NP shapes exhibit variations of emerging facets, and processes such as adsorption, diffusion, and catalytic activity are, in general, facet sensitive. Therefore, NP properties, e.g., the reactivity of NPs or the stability of assembled NPs, depend on their shape. We combine computational modeling based on density functional theory with experimental techniques such as transmission electron microscopy, energy-dispersive x-ray spectroscopy, and x-ray powder diffraction to investigate the ability of various adsorbates, including hydrohalic and carboxylic acids, to influence NP shape. This approach allows us to identify mechanisms stabilizing specific surface facets and thus to predict NP shapes using computational model systems and to experimentally characterize the synthesized NPs in detail. Shape-controlled anatase TiO2 NPs are synthesized here in agreement with the calculations in platelet and bi-pyramidal shapes by employing different precursors. The importance of the physical conditions and chemical environment during synthesis, e.g., via competitive adsorption or changes in the chemical potentials, is studied via ab initio thermodynamics, which allows us to set previous and new results in a broader context and to highlight potentials for additional synthesis routes and NP shapes.
科研通智能强力驱动
Strongly Powered by AbleSci AI