亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Social media video summarization using multi-Visual features and Kohnen's Self Organizing Map

计算机科学 自动汇总 关键帧 聚类分析 人工智能 钥匙(锁) 情报检索 帧(网络) 视频跟踪 特征提取 计算机视觉 特征(语言学) 多媒体 视频处理 电信 语言学 哲学 计算机安全
作者
Seema Rani,Mukesh Kumar
出处
期刊:Information Processing and Management [Elsevier]
卷期号:57 (3): 102190-102190 被引量:33
标识
DOI:10.1016/j.ipm.2019.102190
摘要

Social networking tools such as Facebook, YouTube, Twitter, and Instagram, are becoming major platforms for communication. YouTube as one of the primary video sharing platform serves over 100 million distinct videos, 300 hours of videos are uploaded on YouTube every minute along with textual data. This massive amount of multimedia data needs to be managed with high efficiency, the irrelevant and redundant data needs to be removed. Video summarization ideals with the problem of redundant data in a video. A summarized video contains the most distinct frames which are termed as key frames. Most of the research work on key frames extraction considers only a single visual feature which is not sufficient for capturing the full pictorial details and hence affecting the quality of video summary generated. So there is a need to explore multiple visual features for key frames extraction. In this research work a key frame extraction technique based upon fusion of four visual features namely: correlation of RGB color channels, color histogram, mutual information and moments of inertia is proposed. Kohonen Self Organizing map as a clustering approach is used to find the most representative frames from the list of frames coming after fusion. Useless frames are discarded and frames having maximum Euclidean distance within a cluster are selected as final key frames. The results of the proposed technique are compared with the existing video summarization techniques: User generated summary, Video SUMMarization (VSUMM), and Video Key Frame Extraction through Dynamic Delaunay Clustering (VKEDDCSC) which shows a considerable improvement in terms of fidelity and Shot Reconstruction Degree (SRD) score.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
东溟渔夫发布了新的文献求助10
9秒前
牛牛月饼完成签到,获得积分10
16秒前
Akim应助东溟渔夫采纳,获得10
16秒前
BBQ关闭了BBQ文献求助
17秒前
18秒前
1分钟前
v哈哈发布了新的文献求助10
1分钟前
脑洞疼应助科研通管家采纳,获得10
1分钟前
Ming发布了新的文献求助10
1分钟前
SciGPT应助Ming采纳,获得10
1分钟前
瘦瘦的师发布了新的文献求助10
2分钟前
大模型应助zhengzhster采纳,获得10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
自律发布了新的文献求助10
2分钟前
自律完成签到,获得积分10
2分钟前
BBQ发布了新的文献求助10
3分钟前
Ezekiel给Ezekiel的求助进行了留言
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
BBQ完成签到,获得积分10
3分钟前
lim完成签到,获得积分10
3分钟前
3分钟前
zhengzhster发布了新的文献求助10
4分钟前
小邓完成签到,获得积分10
4分钟前
可乐发布了新的文献求助30
4分钟前
量子星尘发布了新的文献求助10
4分钟前
小于完成签到,获得积分10
4分钟前
4分钟前
Ezekiel发布了新的文献求助10
4分钟前
上官枫完成签到 ,获得积分10
5分钟前
5分钟前
Ming发布了新的文献求助10
5分钟前
小于完成签到,获得积分10
5分钟前
Ming完成签到,获得积分10
5分钟前
merrylake完成签到 ,获得积分10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
vivishe发布了新的文献求助10
5分钟前
vivishe完成签到,获得积分10
5分钟前
George发布了新的文献求助10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664448
求助须知:如何正确求助?哪些是违规求助? 4862399
关于积分的说明 15107785
捐赠科研通 4823068
什么是DOI,文献DOI怎么找? 2581898
邀请新用户注册赠送积分活动 1536037
关于科研通互助平台的介绍 1494433