Social media video summarization using multi-Visual features and Kohnen's Self Organizing Map

计算机科学 自动汇总 关键帧 聚类分析 人工智能 钥匙(锁) 情报检索 帧(网络) 视频跟踪 特征提取 计算机视觉 特征(语言学) 多媒体 视频处理 电信 语言学 哲学 计算机安全
作者
Seema Rani,Mukesh Kumar
出处
期刊:Information Processing and Management [Elsevier]
卷期号:57 (3): 102190-102190 被引量:33
标识
DOI:10.1016/j.ipm.2019.102190
摘要

Social networking tools such as Facebook, YouTube, Twitter, and Instagram, are becoming major platforms for communication. YouTube as one of the primary video sharing platform serves over 100 million distinct videos, 300 hours of videos are uploaded on YouTube every minute along with textual data. This massive amount of multimedia data needs to be managed with high efficiency, the irrelevant and redundant data needs to be removed. Video summarization ideals with the problem of redundant data in a video. A summarized video contains the most distinct frames which are termed as key frames. Most of the research work on key frames extraction considers only a single visual feature which is not sufficient for capturing the full pictorial details and hence affecting the quality of video summary generated. So there is a need to explore multiple visual features for key frames extraction. In this research work a key frame extraction technique based upon fusion of four visual features namely: correlation of RGB color channels, color histogram, mutual information and moments of inertia is proposed. Kohonen Self Organizing map as a clustering approach is used to find the most representative frames from the list of frames coming after fusion. Useless frames are discarded and frames having maximum Euclidean distance within a cluster are selected as final key frames. The results of the proposed technique are compared with the existing video summarization techniques: User generated summary, Video SUMMarization (VSUMM), and Video Key Frame Extraction through Dynamic Delaunay Clustering (VKEDDCSC) which shows a considerable improvement in terms of fidelity and Shot Reconstruction Degree (SRD) score.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沿海九号公路完成签到,获得积分10
刚刚
www完成签到 ,获得积分10
刚刚
UIKI发布了新的文献求助10
1秒前
王王完成签到 ,获得积分10
2秒前
2秒前
炎方发布了新的文献求助10
2秒前
2秒前
王青文发布了新的文献求助10
2秒前
3秒前
PTERTIM247完成签到,获得积分10
4秒前
orixero应助Star采纳,获得20
4秒前
jokershy发布了新的文献求助10
4秒前
wanci应助包容万言采纳,获得30
4秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
搜集达人应助子枫采纳,获得10
6秒前
充电宝应助tfldog采纳,获得10
6秒前
胡哈哈完成签到,获得积分10
6秒前
李健的小迷弟应助yangsouth采纳,获得10
6秒前
7秒前
沐晴完成签到,获得积分10
7秒前
CH发布了新的文献求助100
7秒前
dandna完成签到 ,获得积分10
8秒前
8秒前
大个应助上将小丁采纳,获得10
9秒前
焦焦发布了新的文献求助10
10秒前
科研通AI2S应助HJJHJH采纳,获得10
10秒前
AAA888发布了新的文献求助10
10秒前
10秒前
quasar发布了新的文献求助10
10秒前
333333发布了新的文献求助10
11秒前
11秒前
琦琦完成签到,获得积分20
11秒前
11秒前
12秒前
13秒前
超级灰狼发布了新的文献求助10
13秒前
kaitai发布了新的文献求助10
13秒前
传奇3应助UIKI采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5508443
求助须知:如何正确求助?哪些是违规求助? 4603680
关于积分的说明 14486822
捐赠科研通 4537825
什么是DOI,文献DOI怎么找? 2486783
邀请新用户注册赠送积分活动 1469254
关于科研通互助平台的介绍 1441636