Social media video summarization using multi-Visual features and Kohnen's Self Organizing Map

计算机科学 自动汇总 关键帧 聚类分析 人工智能 钥匙(锁) 情报检索 帧(网络) 特征提取 计算机视觉 特征(语言学) 多媒体 电信 语言学 哲学 计算机安全
作者
Seema Rani,Mukesh Kumar
出处
期刊:Information Processing and Management [Elsevier BV]
卷期号:57 (3): 102190-102190 被引量:25
标识
DOI:10.1016/j.ipm.2019.102190
摘要

Social networking tools such as Facebook, YouTube, Twitter, and Instagram, are becoming major platforms for communication. YouTube as one of the primary video sharing platform serves over 100 million distinct videos, 300 hours of videos are uploaded on YouTube every minute along with textual data. This massive amount of multimedia data needs to be managed with high efficiency, the irrelevant and redundant data needs to be removed. Video summarization ideals with the problem of redundant data in a video. A summarized video contains the most distinct frames which are termed as key frames. Most of the research work on key frames extraction considers only a single visual feature which is not sufficient for capturing the full pictorial details and hence affecting the quality of video summary generated. So there is a need to explore multiple visual features for key frames extraction. In this research work a key frame extraction technique based upon fusion of four visual features namely: correlation of RGB color channels, color histogram, mutual information and moments of inertia is proposed. Kohonen Self Organizing map as a clustering approach is used to find the most representative frames from the list of frames coming after fusion. Useless frames are discarded and frames having maximum Euclidean distance within a cluster are selected as final key frames. The results of the proposed technique are compared with the existing video summarization techniques: User generated summary, Video SUMMarization (VSUMM), and Video Key Frame Extraction through Dynamic Delaunay Clustering (VKEDDCSC) which shows a considerable improvement in terms of fidelity and Shot Reconstruction Degree (SRD) score.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
callmecjh完成签到,获得积分10
1秒前
L3213036054发布了新的文献求助10
2秒前
2秒前
lala完成签到,获得积分10
2秒前
思源应助Andrea采纳,获得10
3秒前
神勇的曼柔关注了科研通微信公众号
3秒前
fufu完成签到 ,获得积分10
4秒前
华国锋应助科研通管家采纳,获得20
4秒前
搜集达人应助科研通管家采纳,获得10
4秒前
谢许杯商应助科研通管家采纳,获得20
4秒前
Ava应助科研通管家采纳,获得10
4秒前
顾矜应助科研通管家采纳,获得10
4秒前
研友_VZG7GZ应助科研通管家采纳,获得30
5秒前
科研助手6应助科研通管家采纳,获得10
5秒前
whatever应助科研通管家采纳,获得10
5秒前
所所应助科研通管家采纳,获得10
5秒前
慕青应助科研通管家采纳,获得10
5秒前
小蘑菇应助科研通管家采纳,获得10
5秒前
5秒前
断数循环应助科研通管家采纳,获得10
5秒前
5秒前
所所应助科研通管家采纳,获得10
5秒前
酷波er应助科研通管家采纳,获得10
6秒前
Lucas应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
6秒前
6秒前
科目三应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
6秒前
深情安青应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
6秒前
loading发布了新的文献求助10
6秒前
顾矜应助solveing采纳,获得10
7秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998315
求助须知:如何正确求助?哪些是违规求助? 3537823
关于积分的说明 11272560
捐赠科研通 3276885
什么是DOI,文献DOI怎么找? 1807154
邀请新用户注册赠送积分活动 883778
科研通“疑难数据库(出版商)”最低求助积分说明 810014