已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Social media video summarization using multi-Visual features and Kohnen's Self Organizing Map

计算机科学 自动汇总 关键帧 聚类分析 人工智能 钥匙(锁) 情报检索 帧(网络) 视频跟踪 特征提取 计算机视觉 特征(语言学) 多媒体 视频处理 电信 语言学 哲学 计算机安全
作者
Seema Rani,Mukesh Kumar
出处
期刊:Information Processing and Management [Elsevier]
卷期号:57 (3): 102190-102190 被引量:33
标识
DOI:10.1016/j.ipm.2019.102190
摘要

Social networking tools such as Facebook, YouTube, Twitter, and Instagram, are becoming major platforms for communication. YouTube as one of the primary video sharing platform serves over 100 million distinct videos, 300 hours of videos are uploaded on YouTube every minute along with textual data. This massive amount of multimedia data needs to be managed with high efficiency, the irrelevant and redundant data needs to be removed. Video summarization ideals with the problem of redundant data in a video. A summarized video contains the most distinct frames which are termed as key frames. Most of the research work on key frames extraction considers only a single visual feature which is not sufficient for capturing the full pictorial details and hence affecting the quality of video summary generated. So there is a need to explore multiple visual features for key frames extraction. In this research work a key frame extraction technique based upon fusion of four visual features namely: correlation of RGB color channels, color histogram, mutual information and moments of inertia is proposed. Kohonen Self Organizing map as a clustering approach is used to find the most representative frames from the list of frames coming after fusion. Useless frames are discarded and frames having maximum Euclidean distance within a cluster are selected as final key frames. The results of the proposed technique are compared with the existing video summarization techniques: User generated summary, Video SUMMarization (VSUMM), and Video Key Frame Extraction through Dynamic Delaunay Clustering (VKEDDCSC) which shows a considerable improvement in terms of fidelity and Shot Reconstruction Degree (SRD) score.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Lucas应助jjdeng采纳,获得10
2秒前
玫瑰先森完成签到,获得积分10
4秒前
Akim应助小明采纳,获得10
4秒前
5秒前
叛逆黑洞完成签到 ,获得积分10
5秒前
黄金完成签到,获得积分10
5秒前
菜小瓜完成签到,获得积分20
6秒前
7秒前
7秒前
麻酱发布了新的文献求助30
9秒前
淡淡的绮琴完成签到 ,获得积分10
9秒前
李爱国应助文慧采纳,获得10
9秒前
华仔应助pwq采纳,获得10
9秒前
菜小瓜发布了新的文献求助10
11秒前
12秒前
liuxindong关注了科研通微信公众号
12秒前
Ying完成签到,获得积分10
13秒前
长雁完成签到,获得积分10
13秒前
义气翩跹给义气翩跹的求助进行了留言
13秒前
15秒前
wanci应助lolly采纳,获得10
15秒前
15秒前
19秒前
jjdeng发布了新的文献求助10
19秒前
麻酱完成签到,获得积分20
19秒前
Jasper应助koalafish采纳,获得10
19秒前
尾状叶完成签到 ,获得积分10
20秒前
Rainy发布了新的文献求助10
20秒前
孤鲸游完成签到,获得积分10
22秒前
纸上浅发布了新的文献求助30
23秒前
24秒前
24秒前
24秒前
24秒前
24秒前
科研通AI6应助科研通管家采纳,获得10
25秒前
25秒前
TED应助科研通管家采纳,获得10
25秒前
彭于晏应助科研通管家采纳,获得10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5771799
求助须知:如何正确求助?哪些是违规求助? 5593934
关于积分的说明 15428394
捐赠科研通 4905053
什么是DOI,文献DOI怎么找? 2639200
邀请新用户注册赠送积分活动 1587067
关于科研通互助平台的介绍 1541958