Investigating the challenges and generalizability of deep learning brain conductivity mapping

概化理论 深度学习 计算机科学 人工智能 卷积神经网络 电导率 模式识别(心理学) 稳健性(进化) 噪音(视频) 人工神经网络 机器学习 数学 统计 物理 生物化学 化学 量子力学 图像(数学) 基因
作者
Nils Hampe,Ulrich Katscher,Cornelis A. T. van den Berg,Khin Khin Tha,Stefano Mandija
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:65 (13): 135001-135001 被引量:18
标识
DOI:10.1088/1361-6560/ab9356
摘要

To investigate deep learning electrical properties tomography (EPT) for application on different simulated and in-vivo datasets, including pathologies for brain conductivity reconstructions, 3D patch-based convolutional neural networks were trained to predict conductivity maps from B 1 transceive phase data. To compare the performance of DL-EPT networks on different datasets, three datasets were used throughout this work, one from simulations and two from in-vivo measurements from healthy volunteers and patients with brain lesions, respectively. At first, networks trained on simulations were tested on all datasets with different levels of homogeneous Gaussian noise introduced in training and testing. Secondly, to investigate potential robustness towards systematical differences between simulated and measured phase maps, in-vivo data with conductivity labels from conventional EPT were used for training. High quality conductivity reconstructions from networks trained on simulations with and without noise confirm the potential of deep learning for EPT. However, when this network is used for in-vivo reconstructions, measurement related artifacts affect the quality of conductivity maps. Training DL-EPT networks using conductivity labels from conventional EPT improves the quality of the results. Networks trained on realistic simulations yield reconstruction artifacts when applied to in-vivo data. Training with realistic phase data and conductivity labels from conventional EPT allows for reducing these artifacts.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研副本完成签到,获得积分10
刚刚
刚刚
刚刚
1秒前
南怀发布了新的文献求助10
1秒前
隐形不言发布了新的文献求助10
2秒前
Llllllxxxxxxx完成签到,获得积分10
3秒前
4秒前
大模型应助不安红豆采纳,获得10
4秒前
4秒前
拾陆完成签到,获得积分10
5秒前
5秒前
李蔚然发布了新的文献求助10
6秒前
北过居庸完成签到,获得积分10
6秒前
张书源完成签到,获得积分10
7秒前
Aluhaer应助王俊采纳,获得20
7秒前
7秒前
chu完成签到 ,获得积分10
8秒前
neuron2021完成签到,获得积分10
8秒前
欣喜安蕾完成签到,获得积分10
9秒前
9秒前
无心的人雄完成签到 ,获得积分10
9秒前
PetersenGraph完成签到,获得积分10
9秒前
9秒前
天天做梦的李某人完成签到,获得积分10
10秒前
10秒前
北冥有鱼发布了新的文献求助10
10秒前
jiangqin123发布了新的文献求助10
11秒前
12秒前
重要问丝完成签到 ,获得积分10
12秒前
所所应助嘿嘿哈采纳,获得10
12秒前
尊敬的怀曼完成签到,获得积分10
12秒前
heysiri完成签到,获得积分10
13秒前
皮皮完成签到,获得积分20
13秒前
紫宸发布了新的文献求助10
14秒前
李蔚然完成签到,获得积分20
14秒前
聪123完成签到,获得积分10
17秒前
crazzzzzy发布了新的文献求助10
18秒前
Merryonwine发布了新的文献求助10
20秒前
笑点低诗桃完成签到,获得积分20
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
Modern Britain, 1750 to the Present (求助第2版!!!) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5178195
求助须知:如何正确求助?哪些是违规求助? 4366550
关于积分的说明 13595426
捐赠科研通 4216880
什么是DOI,文献DOI怎么找? 2312723
邀请新用户注册赠送积分活动 1311569
关于科研通互助平台的介绍 1259854