亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Investigating the challenges and generalizability of deep learning brain conductivity mapping

概化理论 深度学习 计算机科学 人工智能 卷积神经网络 电导率 模式识别(心理学) 稳健性(进化) 噪音(视频) 人工神经网络 机器学习 数学 统计 物理 化学 图像(数学) 基因 量子力学 生物化学
作者
Nils Hampe,Ulrich Katscher,Cornelis A. T. van den Berg,Khin Khin Tha,Stefano Mandija
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:65 (13): 135001-135001 被引量:18
标识
DOI:10.1088/1361-6560/ab9356
摘要

To investigate deep learning electrical properties tomography (EPT) for application on different simulated and in-vivo datasets, including pathologies for brain conductivity reconstructions, 3D patch-based convolutional neural networks were trained to predict conductivity maps from B 1 transceive phase data. To compare the performance of DL-EPT networks on different datasets, three datasets were used throughout this work, one from simulations and two from in-vivo measurements from healthy volunteers and patients with brain lesions, respectively. At first, networks trained on simulations were tested on all datasets with different levels of homogeneous Gaussian noise introduced in training and testing. Secondly, to investigate potential robustness towards systematical differences between simulated and measured phase maps, in-vivo data with conductivity labels from conventional EPT were used for training. High quality conductivity reconstructions from networks trained on simulations with and without noise confirm the potential of deep learning for EPT. However, when this network is used for in-vivo reconstructions, measurement related artifacts affect the quality of conductivity maps. Training DL-EPT networks using conductivity labels from conventional EPT improves the quality of the results. Networks trained on realistic simulations yield reconstruction artifacts when applied to in-vivo data. Training with realistic phase data and conductivity labels from conventional EPT allows for reducing these artifacts.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dgcyjvfb发布了新的文献求助10
3秒前
4秒前
32秒前
Dou发布了新的文献求助10
35秒前
天天快乐应助Dou采纳,获得10
46秒前
46秒前
dgcyjvfb发布了新的文献求助10
50秒前
1分钟前
伶俐楷瑞完成签到,获得积分10
1分钟前
1分钟前
dgcyjvfb发布了新的文献求助10
1分钟前
我爱高数发布了新的文献求助10
1分钟前
小马甲应助lulubeans采纳,获得10
1分钟前
1分钟前
1分钟前
我爱高数完成签到,获得积分10
1分钟前
小刘恨香菜完成签到 ,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
lulubeans发布了新的文献求助10
1分钟前
lulubeans完成签到,获得积分20
2分钟前
2分钟前
2分钟前
领导范儿应助lulubeans采纳,获得30
2分钟前
自然涵易完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
自然涵易发布了新的文献求助10
3分钟前
3分钟前
3分钟前
3分钟前
研友_LJajX8发布了新的文献求助10
4分钟前
4分钟前
4分钟前
模糊中正应助luckss采纳,获得10
4分钟前
4分钟前
5分钟前
5分钟前
5分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
Examining the relationship between working capital management and firm performance: a state-of-the-art literature review and visualisation analysis 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3445140
求助须知:如何正确求助?哪些是违规求助? 3041131
关于积分的说明 8983996
捐赠科研通 2729756
什么是DOI,文献DOI怎么找? 1497158
科研通“疑难数据库(出版商)”最低求助积分说明 692167
邀请新用户注册赠送积分活动 689697