Detecting risk of suicide attempts among Chinese medical college students using a machine learning algorithm

随机森林 自杀预防 机器学习 自杀未遂 自杀风险 心理学 心理健康 毒物控制 算法 人工智能 计算机科学 医学 临床心理学 精神科 医疗急救
作者
Yanmei Shen,Wenyu Zhang,Bella Siu Man Chan,Yaru Zhang,Fanchao Meng,Elizabeth A. Kennon,Hanjing Emily Wu,Xuerong Luo,Xiangyang Zhang
出处
期刊:Journal of Affective Disorders [Elsevier]
卷期号:273: 18-23 被引量:39
标识
DOI:10.1016/j.jad.2020.04.057
摘要

Suicide has become one of the most prominent concerns for public health and wellness; however, detecting suicide risk factors among individuals remains a big challenge. The aim of this study was to develop a machine learning algorithm that could effectively and accurately identify the probability of suicide attempts in medical college students. A total of 4,882 medical students were enrolled in this cross-sectional study. Self-report data on socio-demographic and clinical characteristics were collected online via website or through the widely used social media app, WeChat. 5-fold cross validation was used to build a random forest model with 37 suicide attempt predictors. Model performance was measured for sensitivity, specificity, area under the curve (AUC), and accuracy. All analyses were conducted in MATLAB. The random forest model achieved good performance [area under the curve (AUC) = 0.9255] in predicting suicide attempts with an accuracy of 90.1% (SD = 0.67%), sensitivity of 73.51% (SD = 2.33%) and specificity of 91.68% (SD = 0.82%). The participants are primarily females and medical students. This study demonstrates that the random forest model has the potential to predict suicide attempts among medical college students with high accuracy. Our findings suggest that application of the machine learning model may assist in improving the efficiency of suicide prevention.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
对对对发布了新的文献求助10
2秒前
读书妖精文亭逐完成签到,获得积分10
5秒前
panda完成签到 ,获得积分10
7秒前
Orange应助T1unkillable采纳,获得10
8秒前
CipherSage应助现代的无春采纳,获得10
11秒前
11秒前
13秒前
15秒前
16秒前
彩色的不可完成签到,获得积分20
17秒前
皮蛋瘦肉周完成签到,获得积分10
17秒前
SEAMUS发布了新的文献求助10
18秒前
棠真发布了新的文献求助10
18秒前
高高高发布了新的文献求助10
20秒前
20秒前
路过你的夏完成签到,获得积分10
21秒前
..发布了新的文献求助10
21秒前
独孤一草完成签到,获得积分10
25秒前
科研通AI2S应助nyc采纳,获得10
25秒前
赘婿应助121采纳,获得10
25秒前
充电宝应助cindy采纳,获得30
26秒前
Akim应助找屎大王胡子采纳,获得10
27秒前
..完成签到,获得积分10
28秒前
Bismarck发布了新的文献求助10
29秒前
小米辣完成签到 ,获得积分10
29秒前
补作业的糖豆完成签到,获得积分10
30秒前
11发布了新的文献求助10
30秒前
31秒前
SEAMUS完成签到,获得积分10
31秒前
酷炫的过客完成签到 ,获得积分10
33秒前
33秒前
provence应助叁壹捌采纳,获得10
35秒前
深情安青应助鲤鱼凛采纳,获得10
36秒前
jia完成签到,获得积分10
37秒前
CipherSage应助Bismarck采纳,获得10
37秒前
彭于彦祖应助加菲丰丰采纳,获得50
37秒前
38秒前
情怀应助XIXI采纳,获得10
39秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164337
求助须知:如何正确求助?哪些是违规求助? 2815164
关于积分的说明 7907823
捐赠科研通 2474743
什么是DOI,文献DOI怎么找? 1317626
科研通“疑难数据库(出版商)”最低求助积分说明 631898
版权声明 602234