激光雷达
同时定位和映射
里程计
计算机科学
占用网格映射
点云
计算机视觉
人工智能
全球导航卫星系统应用
遥感
移动机器人
全球定位系统
地理
机器人
电信
作者
Jun Li,Junqiao Zhao,Yuchen Kang,Xudong He,Chen Ye,Lu Sun
出处
期刊:IEEE Intelligent Vehicles Symposium
日期:2019-06-09
被引量:6
标识
DOI:10.1109/ivs.2019.8813868
摘要
Precisely localizing a vehicle in the GNSS-denied urban area is crucial for autonomous driving. The occupancy grid-based 2D LiDAR SLAM methods scale poorly to outdoor road scenarios, while the 3D point cloud-based LiDAR SLAM methods suffer from huge computation and storage costs. Aiming at the precise real-time LiDAR SLAM for both indoor and outdoor, this paper proposed a direct 2.5D heightmap-based SLAM system. This system extended our previously proposed DLO (the direct 2.5D LiDAR odometry) method by introducing the 2.5D segment features for efficient loop closure detection. We experimented our SLAM method on the KITTI datasets and shown it superior performance compared with the existing LiDAR SLAM methods.
科研通智能强力驱动
Strongly Powered by AbleSci AI