Physical metallurgy-guided machine learning and artificial intelligent design of ultrahigh-strength stainless steel

材料科学 过程(计算) 粉末冶金 物理冶金学 合金 体积分数 分类器(UML) 计算机科学 机械工程 机器学习 工艺工程 人工智能 冶金 复合材料 微观结构 工程类 操作系统
作者
Chunguang Shen,Chenchong Wang,Xiaolu Wei,Yong Li,Sybrand van der Zwaag,Wei Xu
出处
期刊:Acta Materialia [Elsevier]
卷期号:179: 201-214 被引量:179
标识
DOI:10.1016/j.actamat.2019.08.033
摘要

With the development of the materials genome philosophy and data mining methodologies, machine learning (ML) has been widely applied for discovering new materials in various systems including high-end steels with improved performance. Although recently, some attempts have been made to incorporate physical features in the ML process, its effects have not been demonstrated and systematically analysed nor experimentally validated with prototype alloys. To address this issue, a physical metallurgy (PM) -guided ML model was developed, wherein intermediate parameters were generated based on original inputs and PM principles, e.g., equilibrium volume fraction (Vf) and driving force (Df) for precipitation, and these were added to the original dataset vectors as extra dimensions to participate in and guide the ML process. As a result, the ML process becomes more robust when dealing with small datasets by improving the data quality and enriching data information. Therefore, a new material design method is proposed combining PM-guided ML regression, ML classifier and a genetic algorithm (GA). The model was successfully applied to the design of advanced ultrahigh-strength stainless steels using only a small database extracted from the literature. The proposed prototype alloy with a leaner chemistry but better mechanical properties has been produced experimentally and an excellent agreement was obtained for the predicted optimal parameter settings and the final properties. In addition, the present work also clearly demonstrated that implementation of PM parameters can improve the design accuracy and efficiency by eliminating intermediate solutions not obeying PM principles in the ML process. Furthermore, various important factors influencing the generalizability of the ML model are discussed in detail.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
文艺雁梅发布了新的文献求助10
刚刚
刚刚
六点发布了新的文献求助10
1秒前
1秒前
小小完成签到,获得积分20
2秒前
Wtony完成签到 ,获得积分10
2秒前
yzl科研爱我完成签到,获得积分10
2秒前
杨志坚完成签到 ,获得积分10
4秒前
zxd完成签到,获得积分10
4秒前
Dado完成签到,获得积分10
4秒前
王学禹完成签到,获得积分10
4秒前
Luna完成签到 ,获得积分10
4秒前
科研小白完成签到 ,获得积分10
4秒前
zj完成签到,获得积分10
5秒前
Tracy.完成签到,获得积分10
5秒前
彩色开山完成签到 ,获得积分10
5秒前
台台发布了新的文献求助10
5秒前
李大白完成签到 ,获得积分10
5秒前
科研通AI5应助壮观雅柏采纳,获得10
6秒前
6秒前
7秒前
任性灵寒完成签到 ,获得积分10
7秒前
qqqxl完成签到,获得积分10
7秒前
zhangjianzeng完成签到,获得积分10
9秒前
9秒前
starwan完成签到 ,获得积分10
9秒前
11完成签到 ,获得积分10
9秒前
10秒前
LIUJIE完成签到,获得积分10
10秒前
MrChew完成签到 ,获得积分10
10秒前
香蕉觅云应助karulko采纳,获得10
10秒前
oliver501完成签到,获得积分10
10秒前
Qi应助彩色开山采纳,获得10
11秒前
高大鸭子完成签到 ,获得积分10
11秒前
11秒前
锌小子完成签到,获得积分10
12秒前
情怀应助zhangjianzeng采纳,获得10
12秒前
小苔藓完成签到 ,获得积分10
12秒前
Theodore完成签到,获得积分10
12秒前
yydsyyd完成签到 ,获得积分10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Comprehensive Computational Chemistry 1000
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3550516
求助须知:如何正确求助?哪些是违规求助? 3126797
关于积分的说明 9370479
捐赠科研通 2825926
什么是DOI,文献DOI怎么找? 1553494
邀请新用户注册赠送积分活动 724889
科研通“疑难数据库(出版商)”最低求助积分说明 714483