Self-Attention Relation Network for Few-Shot Learning

计算机科学 关系(数据库) 人工智能 嵌入 特征(语言学) 弹丸 依赖关系(UML) 集合(抽象数据类型) 模式识别(心理学) 特征学习 机器学习 数据挖掘 哲学 有机化学 化学 程序设计语言 语言学
作者
Binyuan Hui,Pengfei Zhu,Qinghua Hu,Qilong Wang
出处
期刊:International Conference on Multimedia and Expo 被引量:30
标识
DOI:10.1109/icmew.2019.00041
摘要

The success of deep learning greatly attributes to massive data with accurate labels. However, for few shot learning, especially zero shot learning, deep models cannot be well trained in that there are few available labeled samples. Inspired by human visual system, attention models have been widely used in action recognition, instance segmentation, and other vision tasks by introducing spatial, temporal, or channel-wise weights. In this paper, we propose a self-attention relation network (SARN) for few-shot learning. SARN consists of three modules, i.e., embedding module, attention module and relation module. The embedding module extracts feature maps while the attention module is introduced to enhance the learned features. Finally the extracted features of the query sample and support set are fed into the relation module for comparison, and the relation score is output for classification. Compared with the existing relation network for few shot learning, SARN can discover non-local information and allow long-range dependency. SARN can be easily extended to zero shot learning by replacing the support set with semantic vectors. Experiments on benchmarks (Omniglot, miniImageNet, AwA, and CUB) show that our proposed SARN outperforms the state-of-the-art algorithms in terms of both few shot and zero shot tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kelly发布了新的文献求助10
1秒前
1秒前
LOVE17发布了新的文献求助10
1秒前
Eva完成签到,获得积分10
2秒前
Pattis完成签到 ,获得积分10
3秒前
Lynette8888发布了新的文献求助20
4秒前
4秒前
5秒前
5秒前
壮观寒荷完成签到,获得积分10
6秒前
8秒前
贤惠的碧空完成签到,获得积分10
11秒前
mmr完成签到,获得积分10
11秒前
丘比特应助Source采纳,获得10
12秒前
下次一定完成签到,获得积分10
13秒前
FashionBoy应助LL采纳,获得10
13秒前
wuyan完成签到,获得积分10
13秒前
Lareina完成签到,获得积分20
13秒前
科研通AI2S应助wsff采纳,获得10
13秒前
上官若男应助玛瑙采纳,获得10
15秒前
15秒前
15秒前
pcr163应助在水一方采纳,获得100
16秒前
xiaofei666完成签到,获得积分10
16秒前
阿三完成签到 ,获得积分10
18秒前
zy完成签到,获得积分10
19秒前
LOVE17完成签到 ,获得积分10
20秒前
陈糯米完成签到,获得积分10
20秒前
77发布了新的文献求助10
20秒前
儒雅龙完成签到 ,获得积分10
21秒前
潇洒自由基完成签到 ,获得积分10
22秒前
22秒前
彩色夜阑完成签到,获得积分10
23秒前
quhayley应助george采纳,获得10
23秒前
23秒前
合适的不言应助小杜老师采纳,获得10
24秒前
啦咯是吗完成签到 ,获得积分10
26秒前
汉堡包应助缓慢的枫叶采纳,获得10
26秒前
LL发布了新的文献求助10
26秒前
cghmfgh完成签到,获得积分10
27秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159909
求助须知:如何正确求助?哪些是违规求助? 2810952
关于积分的说明 7890034
捐赠科研通 2469969
什么是DOI,文献DOI怎么找? 1315243
科研通“疑难数据库(出版商)”最低求助积分说明 630771
版权声明 602012