A comprehensive review of past and present image inpainting methods

修补 计算机科学 人工智能 深度学习 纹理合成 代表(政治) 卷积神经网络 领域(数学) 过程(计算) 图像(数学) 计算机视觉 清晰 优势和劣势 图像处理 模式识别(心理学) 图像纹理 数学 纯数学 哲学 认识论 政治 政治学 法学 操作系统 生物化学 化学
作者
Jireh Jam,Connah Kendrick,Kevin Walker,Vincent Drouard,Jison Gee-Sern Hsu,Moi Hoon Yap
出处
期刊:Computer Vision and Image Understanding [Elsevier BV]
卷期号:203: 103147-103147 被引量:119
标识
DOI:10.1016/j.cviu.2020.103147
摘要

Abstract Images can be described as visual representations or likeness of something (person or object) which can be reproduced or captured, e.g. a hand drawing, photographic material. However, for images on photographic material, images can have defects at the point of captured, become damaged, or degrade over time. Historically, these were restored by hand to maintain image quality using a process known as inpainting. The advent of the digital age has seen the rapid shift image storage technologies, from hard-copies to digitalised units in a less burdensome manner with the application of digital tools. This paper presents a comprehensive review of image inpainting methods over the past decade and the commonly used performance metrics and datasets. To increase the clarity of our review, we use a hierarchical representation for the past state-of-the-art traditional methods and the present state-of-the-art deep learning methods. For traditional methods, we divide the techniques into five sub-categories, i.e. Exemplar-based texture synthesis, Exemplar-based structure synthesis, Diffusion-based methods, Sparse representation methods and Hybrid methods. Then we review the deep learning methods, i.e. Convolutional Neural Networks and Generative Adversarial Networks. We detail the strengths and weaknesses of each to provide new insights in the field. To address the challenges raised from our findings, we outline some potential future works.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助科研通管家采纳,获得10
刚刚
ED应助科研通管家采纳,获得10
刚刚
FashionBoy应助科研通管家采纳,获得10
1秒前
jack应助科研通管家采纳,获得10
1秒前
SYLH应助terryok采纳,获得10
1秒前
ei123应助科研通管家采纳,获得20
1秒前
1秒前
完美世界应助zp采纳,获得10
1秒前
小竖完成签到 ,获得积分10
1秒前
沧笙踏歌完成签到,获得积分10
2秒前
年轻的吐司完成签到,获得积分10
2秒前
顺利凡阳完成签到 ,获得积分10
2秒前
Chang完成签到,获得积分10
2秒前
未来完成签到,获得积分20
3秒前
3秒前
归海老四完成签到,获得积分20
3秒前
执着语风发布了新的文献求助10
3秒前
4秒前
4秒前
思源应助四体不勤采纳,获得10
4秒前
平淡思雁完成签到,获得积分10
5秒前
英俊的铭应助小肥鱼采纳,获得30
6秒前
wanci应助西洲采纳,获得10
6秒前
7秒前
周久完成签到 ,获得积分10
7秒前
yuyuyu完成签到,获得积分10
7秒前
yuM完成签到,获得积分10
7秒前
7秒前
淡漠发布了新的文献求助20
7秒前
开心小猪发布了新的文献求助10
8秒前
smile发布了新的文献求助10
8秒前
9秒前
9秒前
Elaine_fy完成签到,获得积分10
9秒前
derozan发布了新的文献求助30
9秒前
@Hi发布了新的文献求助10
10秒前
CipherSage应助王叮叮采纳,获得10
11秒前
11秒前
冯微微完成签到,获得积分10
11秒前
郭泓嵩完成签到,获得积分10
11秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954099
求助须知:如何正确求助?哪些是违规求助? 3500131
关于积分的说明 11098052
捐赠科研通 3230564
什么是DOI,文献DOI怎么找? 1786012
邀请新用户注册赠送积分活动 869802
科研通“疑难数据库(出版商)”最低求助积分说明 801594