An Encoding Framework With Brain Inner State for Natural Image Identification

编码(内存) 计算机科学 解码方法 人工智能 鉴定(生物学) 集合(抽象数据类型) 模式识别(心理学) 光学(聚焦) 特征提取 算法 植物 物理 光学 生物 程序设计语言
作者
Hao Wu,Ziyu Zhu,Jiayi Wang,Nanning Zheng,Badong Chen
出处
期刊:IEEE Transactions on Cognitive and Developmental Systems [Institute of Electrical and Electronics Engineers]
卷期号:13 (3): 453-464 被引量:5
标识
DOI:10.1109/tcds.2020.2987352
摘要

Neural encoding and decoding, which aim to characterize the relationship between stimuli and brain activities, have emerged as an important area in cognitive neuroscience. Traditional encoding models, which focus on feature extraction and mapping, consider the brain as an input-output mapper without inner states. In this article, inspired by the fact that the human brain acts like a state machine, we proposed a novel encoding framework that combines information from both the external world and the inner state to predict brain activity. The framework comprises two parts: 1) forward encoding model that deals with visual stimuli and 2) inner state model that captures influence from intrinsic connections in the brain. The forward model can be any traditional encoding model, making the framework flexible. The inner state model is a linear model to utilize information in the prediction residuals of the forward model. The proposed encoding framework achieved much better performance on natural image identification than forward-only models, with a maximum identification accuracy of 100%. The identification accuracy decreased slightly with the data set size increasing, but remained relatively stable with different identification methods. The results confirm that the new encoding framework is effective and robust when used for brain decoding.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Wangxiyao发布了新的文献求助10
1秒前
无辜听兰应助wf采纳,获得10
1秒前
江楠完成签到,获得积分10
1秒前
2秒前
秋半雪完成签到,获得积分10
2秒前
虚心的代丝完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
平常的寻真完成签到,获得积分10
3秒前
3秒前
真实的采白完成签到 ,获得积分10
4秒前
5秒前
科研通AI6应助Baibai采纳,获得10
5秒前
5秒前
5秒前
5秒前
无限完成签到 ,获得积分10
5秒前
清茶韵心发布了新的文献求助10
6秒前
6秒前
伯赏元彤发布了新的文献求助10
7秒前
深情安青应助鱼粥很好采纳,获得10
8秒前
ouo发布了新的文献求助10
8秒前
8秒前
充电宝应助sasa采纳,获得10
9秒前
大大小小发布了新的文献求助10
9秒前
9秒前
9秒前
swh发布了新的文献求助10
10秒前
段文天发布了新的文献求助10
10秒前
11秒前
三乐发布了新的文献求助10
11秒前
芸栖完成签到,获得积分10
11秒前
12秒前
rudy发布了新的文献求助10
12秒前
思源应助120ach采纳,获得10
13秒前
13秒前
13秒前
old杜发布了新的文献求助10
14秒前
CodeCraft应助123采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Washback Research in Language Assessment:Fundamentals and Contexts 400
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469254
求助须知:如何正确求助?哪些是违规求助? 4572366
关于积分的说明 14335510
捐赠科研通 4499281
什么是DOI,文献DOI怎么找? 2464986
邀请新用户注册赠送积分活动 1453533
关于科研通互助平台的介绍 1428051