An accurate free energy estimator: based on MM/PBSA combined with interaction entropy for protein–ligand binding affinity

估计员 蛋白质配体 化学 熵(时间箭头) 生物系统 计算机科学 计算化学 数学 物理 热力学 生物化学 统计 生物
作者
Kaifang Huang,Song Luo,Yalong Cong,Susu Zhong,Yifei Qi,Lili Duan
出处
期刊:Nanoscale [Royal Society of Chemistry]
卷期号:12 (19): 10737-10750 被引量:100
标识
DOI:10.1039/c9nr10638c
摘要

The molecular mechanics/Poisson-Boltzmann surface area (MM/PBSA) method is constantly used to calculate the binding free energy of protein-ligand complexes, and has been shown to effectively balance computational cost against accuracy. The relative binding affinities obtained by the MM/PBSA approach are acceptable, while it usually overestimates the absolute binding free energy. This paper proposes four free energy estimators based on the MM/PBSA for enthalpy change combined with interaction entropy (IE) for entropy change using different weights for individual energy terms. The ΔGPBSA_IE method is determined to be an optimal estimator based on its performance in terms of the correlation between experimental and theoretical values and error estimations. This approach is optimized using high-quality experimental values from a training set containing 84 protein-ligand systems, and the coefficients for the sum of electrostatic energy and polar solvation free energy, van der Waals (vdW) energy, non-polar solvation energy and entropy change are obtained by multivariate linear fitting to the corresponding experimental values. A comparison between the traditional MM/PBSA method and this method shows that the correlation coefficient is improved from 0.46 to 0.72 and the slope of the regression line increases from 0.10 to 1.00. More importantly, the mean absolute error (MAE) is significantly reduced from 22.52 to 1.59 kcal mol-1. Furthermore, the numerical stability of this method is validated on a test set with a similar correlation coefficient, slope and MAE to those of the training set. Based on the above advantages, the ΔGPBSA_IE method can be a powerful tool for a reliable and accurate estimation of binding free energy and plays a significant role in a detailed energetic investigation of protein-ligand interaction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助zzzzzz采纳,获得10
1秒前
领导范儿应助黑桃Q采纳,获得10
2秒前
Venus发布了新的文献求助10
3秒前
研友_5Zl9D8发布了新的文献求助30
4秒前
east完成签到,获得积分10
4秒前
6秒前
李爱国应助霸气凡白采纳,获得10
7秒前
whuhustwit发布了新的文献求助10
7秒前
7秒前
斯文败类应助Venus采纳,获得10
8秒前
FashionBoy应助plrwe采纳,获得30
8秒前
9秒前
斯文败类应助AnnChen采纳,获得10
9秒前
三哥哥w给三哥哥w的求助进行了留言
13秒前
爬不起来发布了新的文献求助10
14秒前
俭朴的一曲完成签到,获得积分10
14秒前
15秒前
15秒前
Driscoll完成签到 ,获得积分10
16秒前
思源应助苗苗采纳,获得10
17秒前
18秒前
18秒前
Orange应助吹梦成真采纳,获得10
19秒前
19秒前
风趣的芝麻完成签到 ,获得积分10
20秒前
20秒前
嘻嘻发布了新的文献求助10
21秒前
AnnChen发布了新的文献求助10
21秒前
研友_VZG7GZ应助可可采纳,获得30
24秒前
24秒前
赘婿应助Cccc小懒采纳,获得10
25秒前
黑桃Q发布了新的文献求助10
25秒前
AnnChen完成签到,获得积分10
25秒前
26秒前
26秒前
26秒前
荼靡落时发布了新的文献求助10
29秒前
大绿豆发布了新的文献求助10
30秒前
30秒前
吹梦成真发布了新的文献求助10
31秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ophthalmic Equipment Market 1500
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Genre and Graduate-Level Research Writing 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3673872
求助须知:如何正确求助?哪些是违规求助? 3229298
关于积分的说明 9785160
捐赠科研通 2939933
什么是DOI,文献DOI怎么找? 1611432
邀请新用户注册赠送积分活动 760916
科研通“疑难数据库(出版商)”最低求助积分说明 736344